Please update your browser.

It looks like you are using an old version of the Microsoft Edge browser. To get the best experience with the Busch website, please update your browser.

Vacuum Degassing

Vacuum degassing. A technique for removing dissolved gas from a liquid or paste. By lowering the pressure in a container with the mass.


How does vacuum degassing work?

Degassing of liquid, paste-like and moist products is one of the most important applications of modern vacuum technology.

Gases, vapors and moisture are extracted from the processed material. Under vacuum. The result: higher product quality.

An example: the degassing of plastics during extrusion.
Trapped moisture and gases are extracted directly at the extruder screw zone. Significantly improving the structure and physical properties of the final product.

Busch vacuum technology for degassing

We offer a range of standardized vacuum systems specially designed for extrusion processes. They include separator/filter units to condense the extracted vapors and gases.

Our project engineers will recommend the optimum system. Precisely matched to your extruder throughput and raw material.

Applications where vacuum degassing is used

Vacuum degassing in the food industry

Vacuum degassing is also used in the food industry. To remove encapsulated air from products such as beverages, minced meat, sausage meat, cheese, pasta, vegetable puree, mustard or jam. And many more.

The process normally takes place immediately before packaging the product. It may be carried out in a filler, mixer or extruder production line.

Vacuum degassing improves product quality, structure and consistency. For a better taste experience at the table. Furthermore, it extends the shelf life of foodstuffs by reducing oxidation.

Our solutions

Vacum degassing in the plastics industry

Extrusion is a common process in the plastics industry to melt, mix and homogenize plastics. The raw material is conveyed by a screw in a heated barrel. There, the plastic is melted by friction and heat to a viscous liquid. Which is then forced through a die into its final shape.

During the melting process in the extruder, the residual moisture evaporates. And, due to the increase in temperature and pressure, gases can sublimate from the plastic.

Vacuum ensures that these trapped vapors and gases are reliably extracted from the melt. For a high-quality final product without voids or other imperfections.

Vacuum degassing in the steel industry

Vacuum degassing has become a crucial process in modern steel production. For example, it is the only way to manufacture certain grades of highly stressable steel alloys. Used in the automotive, aerospace and railway sector.

During the production process, molten steel can become infused with excess amounts of hydrogen and carbon. These imperfections affect the integrity and performance of the steel making it less ductile and thus less malleable.

In the past, hydrogen removal required the metal to be cooled down slowly. Thus, extending the manufacturing process. The modern method is to extract hydrogen under vacuum. For faster productionof high-quality steel with precisely defined properties.

Our solutions

Vacuum degassing in the oil and gas industry

Vacuum deaeration is a commonly employed method in the oil and gas industry today. Packed towers are continuously evacuated with vacuum systems. Thus, extracting oxygen and other gases.

In offshore applications, the injection of seawater into the oil well is an essential procedure in crude oil production. It is often a crucial factor in achieving and sustaining economically viable production rates.

The water used has to be deaerated before. Because the oxygen would have an adverse effect on sulphate removal systems. Everything for a stable and economic production.

Our solutions

Vacuum degassing in the beverage industry

For many beverages, a precise quantity of dissolved carbon dioxide is essential. This applies not only to the production of mineral water, but also of soft drinks or even beer. However, the amount of CO2 in spring water may vary.

To overcome this problem, several processes are required. And in every step, vacuum plays an important role.

The CO2 is first extracted from the spring water by a vacuum deaeration system. It is then cooled and liquefied. Finally, it is reintroduced in precisely dosed quantities to the final product at the bottling stage. For consistent quality and a refreshing experience.

Vacuum degassing in practice

  • Modern Vacuum Technology for Melt Degassing During Extrusion

    Modern Vacuum Technology for Melt Degassing During Extrusion

    PolyComp GmbH

    Learn more
  • Complete Vacuum Supply with MINK Claw Vacuum Technology

    Complete Vacuum Supply with MINK Claw Vacuum Technology


    Learn more