Instruction Manual

COBRA ATEX

Dry Screw Vacuum Pumps
NC 0600 C (water-cooled version)
NC 0630 C (water-cooled version)

Ateliers Busch S.A.
Zone industrielle, 2906 Chevenez
Switzerland
Table of Contents

1 Safety ... 4

2 Product Description ... 5
 2.1 Operating Principle ... 7
 2.2 Application .. 7
 2.3 Start Controls .. 8
 2.4 Standard Features .. 8
 2.4.1 Water Cooling .. 8
 2.4.2 Thermometer ... 8
 2.4.3 Sealing Systems ... 8
 2.4.4 Barrier Gas System .. 8
 2.4.5 Nitrogen Panel .. 8
 2.5 Accessories ... 9
 2.5.1 Gas Ballast Valve ... 9
 2.5.2 Silencer ... 9
 2.5.3 Resistance Thermometer .. 9
 2.5.4 Pressure Transmitter ... 9
 2.5.5 Pressure Switch ... 9
 2.5.6 Vibration Analysis System ... 9
 2.5.7 Mechanical Seals ... 9
 2.5.8 Liquid Flushing Device .. 10
 2.5.9 Terminal box .. 10
 2.6 Explanation of ATEX Classification .. 10
 2.6.1 ATEX Nameplate ... 10
 2.7 Safety concept .. 11
 2.7.1 ATEX Classifications and Associated Accessories 11
 2.7.2 P&ID "Piping and Instrumentation Diagram" .. 12

3 Transport .. 14

4 Storage ... 14

5 Installation .. 15
 5.1 Installation Conditions ... 15
 5.2 Connecting Lines / Pipes .. 16
 5.2.1 Suction Connection ... 16
 5.2.2 Discharge Connection .. 17
 5.2.3 Cooling Water Connection ... 18
 5.2.4 Barrier Gas System Connection .. 19
 5.2.5 Dilution Gas System Connection (Optional) ... 20
 5.2.6 Purge Gas System Connection .. 21
 5.3 Earth Connection ... 22
 5.4 Filling Oil .. 22
 5.5 Filling Cooling Liquid ... 24
 5.6 Liquid Flushing Device Installation (Optional) .. 25
 5.7 Fitting the Coupling ... 26
 5.8 Electrical Connection ... 26
 5.8.1 Wiring Diagram Three-Phase Motor (Pump Drive) 27
 5.8.2 Wiring Diagram Solenoid Valve ... 29
 5.9 Electrical Connection of the Monitoring Devices ... 30
 5.9.1 Wiring Diagram Resistance Thermometer .. 30
 5.9.2 Wiring Diagram Pressure Switch ... 31
 5.9.3 Wiring Diagram Pressure Transmitter ... 31
 5.9.4 Wiring Diagram Vibration Sensor ... 32
 5.9.5 Wiring Diagram Flow Switch ... 33
Safety

Prior to handling the machine, this instruction manual should be read and understood. If anything needs to be clarified, please contact your Busch representative. Read this manual carefully before use and keep for future reference.

This instruction manual remains valid as long as the customer does not change anything on the product.

The machine is intended for industrial use. It must be handled only by technically trained personnel.

Always wear appropriate personal protective equipment in accordance with the local regulations.

The machine has been designed and manufactured according to state-of-the-art methods. Nevertheless, residual risks may remain. This instruction manual highlights potential hazards where appropriate. Safety notes and warning messages are tagged with one of the keywords DANGER, WARNING, CAUTION, NOTICE and NOTE as follows:

⚠️ **DANGER**
... indicates an imminent dangerous situation that will result in death or serious injuries if not prevented.

⚠️ **WARNING**
... indicates a potentially dangerous situation that could result in death or serious injuries.

⚠️ **CAUTION**
... indicates a potentially dangerous situation that could result in minor injuries.

⚠️ **NOTICE**
... indicates a potentially dangerous situation that could result in damage to property.

ℹ️ **NOTE**
... indicates helpful tips and recommendations, as well as information for efficient and trouble-free operation.
2 Product Description

NC 0600 C ATEX 2G(i/o) (only the obligatory accessories are illustrated)

recommended

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGC</td>
<td>Barrier gas connection</td>
</tr>
<tr>
<td>CLD</td>
<td>Cooling liquid drain valve</td>
</tr>
<tr>
<td>CLP</td>
<td>Cooling liquid pump</td>
</tr>
<tr>
<td>CWI</td>
<td>Cooling water inlet</td>
</tr>
<tr>
<td>EB</td>
<td>Eye bolt</td>
</tr>
<tr>
<td>FS</td>
<td>Flow switch</td>
</tr>
<tr>
<td>IS</td>
<td>Inlet screen</td>
</tr>
<tr>
<td>MP</td>
<td>Magnetic plug</td>
</tr>
<tr>
<td>MV</td>
<td>Solenoid valve</td>
</tr>
<tr>
<td>ODP</td>
<td>Oil drain plug</td>
</tr>
<tr>
<td>OSG</td>
<td>Oil sight glass</td>
</tr>
<tr>
<td>PGC</td>
<td>Purge gas connection</td>
</tr>
<tr>
<td>PMR</td>
<td>Plug for manual rotation of rotors</td>
</tr>
<tr>
<td>PS/PSA</td>
<td>Pressure switch/transmitter</td>
</tr>
<tr>
<td>SV</td>
<td>Safety valve</td>
</tr>
<tr>
<td>TSA</td>
<td>Temperature transmitter</td>
</tr>
<tr>
<td>CD</td>
<td>Condensate drain</td>
</tr>
<tr>
<td>CLF</td>
<td>Cooling liquid fill plug</td>
</tr>
<tr>
<td>CLV</td>
<td>Cooling liquid vent plug</td>
</tr>
<tr>
<td>CWO</td>
<td>Cooling water outlet</td>
</tr>
<tr>
<td>FME</td>
<td>Flow meter</td>
</tr>
<tr>
<td>IN</td>
<td>Suction connection</td>
</tr>
<tr>
<td>MAN</td>
<td>Manometer</td>
</tr>
<tr>
<td>MTB</td>
<td>Motor terminal box</td>
</tr>
<tr>
<td>NP</td>
<td>Nameplate</td>
</tr>
<tr>
<td>OFP</td>
<td>Oil fill plug</td>
</tr>
<tr>
<td>OUT</td>
<td>Discharge connection</td>
</tr>
<tr>
<td>PHE</td>
<td>Plate heat exchanger</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure regulating valve</td>
</tr>
<tr>
<td>SA</td>
<td>Vibration transmitter</td>
</tr>
<tr>
<td>TM</td>
<td>Thermometer</td>
</tr>
</tbody>
</table>

![Diagram of the product with labeled parts]
NC 0630 C ATEX 3G(i/o) (only the obligatory accessories are illustrated)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGC</td>
<td>Barrier gas connection</td>
</tr>
<tr>
<td>CLD</td>
<td>Cooling liquid drain valve</td>
</tr>
<tr>
<td>CLP</td>
<td>Cooling liquid pump</td>
</tr>
<tr>
<td>CWI</td>
<td>Cooling water inlet</td>
</tr>
<tr>
<td>EB</td>
<td>Eye bolt</td>
</tr>
<tr>
<td>GB</td>
<td>Gas ballast valve</td>
</tr>
<tr>
<td>MAN</td>
<td>Manometer</td>
</tr>
<tr>
<td>MTB</td>
<td>Motor terminal box</td>
</tr>
<tr>
<td>NP</td>
<td>Nameplate</td>
</tr>
<tr>
<td>OFP</td>
<td>Oil fill plug</td>
</tr>
<tr>
<td>OUT</td>
<td>Discharge connection</td>
</tr>
<tr>
<td>PMR</td>
<td>Plug for manual rotation of rotors</td>
</tr>
<tr>
<td>SI</td>
<td>Silencer</td>
</tr>
<tr>
<td>TM</td>
<td>Thermometer</td>
</tr>
<tr>
<td>CD</td>
<td>Condensate drain</td>
</tr>
<tr>
<td>CLF</td>
<td>Cooling liquid fill plug</td>
</tr>
<tr>
<td>CLV</td>
<td>Cooling liquid vent plug</td>
</tr>
<tr>
<td>CWO</td>
<td>Cooling water outlet</td>
</tr>
<tr>
<td>FME</td>
<td>Flow meter</td>
</tr>
<tr>
<td>IN</td>
<td>Suction connection</td>
</tr>
<tr>
<td>MP</td>
<td>Magnetic plug</td>
</tr>
<tr>
<td>MV</td>
<td>Solenoid valve</td>
</tr>
<tr>
<td>ODP</td>
<td>Oil drain plug</td>
</tr>
<tr>
<td>OSG</td>
<td>Oil sight glass</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure regulating valve</td>
</tr>
<tr>
<td>SV</td>
<td>Safety valve</td>
</tr>
<tr>
<td>TSA</td>
<td>Temperature transmitter</td>
</tr>
</tbody>
</table>

NC 0630 C with silencer and gas ballast valve (Options)

NP1 NP2 OSG ODP, MP CWO PHE CIA DA
2.1 Operating Principle

The machine works on the one-stage, twin-screw pump principle.

Two screw rotors are rotating inside the cylinder. The pumped medium is trapped between the cylinder and screw chambers, compressed, and transported to the gas outlet. During the compression process, the two screw rotors do not come into contact with each other nor with the cylinder. There is no need for a lubrication or an operating fluid in the compression chamber.

2.2 Application

The machine is intended for the suction of air and other dry, non-aggressive and non-toxic gases.

Explosive gases and vapour mixtures can be drawn in according to the scope of the Directive ATEX 2014/34/EU.

Depending on the equipment, the machine is intended for suction of explosive gases according to the data given on the nameplate of the machine (NP), see Explanation of ATEX Classification [► 10].

Conveying of other media leads to an increased thermal and/or mechanical load on the machine and is permissible only after a consultation with Busch.

The machine is intended for the placement in a potentially explosive environment according to the data given on the nameplate of the motor and the nameplate of the machine (NP), see Explanation of ATEX Classification [► 10].

In case Busch delivered the machine without motor and coupling, the following must be observed:

- In regards to its explosive atmosphere protection class, the motor and the coupling must have at least the same ATEX classification as the machine for the outside area “Outside (o)”.
- The motor and the coupling do not require an ATEX certification when the machine ATEX classification corresponds to “Outside (o) No ATEX zone”.

The machine is capable of maintaining ultimate pressure, see Technical Data [► 50].

The machine is suitable for continuous operation.

Permitted environmental conditions, see Technical Data [► 50].
2.3 Start Controls
The machine comes without start controls. The control of the machine is to be provided in the course of installation.
The machine can be optionally equipped with a starter unit or a variable-frequency drive.

2.4 Standard Features

2.4.1 Water Cooling
The machine is cooled by a cooling liquid circuit in the cylinder cover and cylinder.
The cooling liquid pump (CLP) allows a recirculating flow in the cooling liquid chamber.
The cooling liquid is cooled by a plate heat exchanger (PHE) which must be connected to the water main.

2.4.2 Thermometer
The thermometer allows a visual display of the cooling liquid temperature.

2.4.3 Sealing Systems
The machine is equipped with labyrinth seals on the motor side and suction side.
Other sealing systems are optionally available, see Mechanical Seals [► 9].
Sealing systems prevent the process gas going to the bearings chambers.
Depending on the application, the sealing systems efficiency can be improved with a barrier gas system, see Barrier Gas System [► 8].

2.4.4 Barrier Gas System
The barrier gas system allows the supply of compressed air or nitrogen into the motor side shaft seals in order to improve the sealing efficiency.

2.4.5 Nitrogen Panel
The nitrogen panel fitted to the base frame allows the supply of nitrogen to a number of different points on the machine.
Each device consists of a solenoid valve to open or close the gas circuit, a pressure regulator and a flow meter to adjust pressure and volume flow separately.
The following devices are available:
- The barrier gas system for sealing systems on motor side. This device is equipped with a flow switch integrated to the flow meter to switch off the machine if the nitrogen volume flow drops below the minimum set flow value.
- The dilution gas ballast prevents the formation of condensates or dilutes them, depending on the application. The nitrogen is fed into the cylinder.
- The purge gas system fitted at the inlet flange allows to flush the machine after use or during operation. The nitrogen is fed into the inlet flange.
2.5 Accessories

NOTE
Depending on the ATEX classification of the machine, some of the following accessories may be mandatory, see ATEX Classifications and Associated Accessories [► 11].

2.5.1 Gas Ballast Valve
The gas ballast valve mixes the process gas with a limited quantity of ambient air to counteract the condensation of vapour inside the machine.
The gas ballast valve has an influence on the ultimate pressure of the machine, see Technical Data [► 50].
A ball valve enables to open or close the gas ballast flow.

2.5.2 Silencer
A silencer at the discharge connection (OUT) can be provided to reduce the exhaust gas noise.

2.5.3 Resistance Thermometer
The resistance thermometer monitors the cooling liquid temperature. A second resistance thermometer might be installed to monitor the exhaust gas temperature.
Warning and trip signals must be set, see Wiring Diagram Resistance Thermometer [► 30].

2.5.4 Pressure Transmitter
The pressure transmitter monitors the gas pressure at the discharge connection (OUT).
Warning and trip signals must be set, see Wiring Diagram Pressure Transmitter [► 31].

2.5.5 Pressure Switch
The pressure switch monitors the gas pressure at the discharge connection (OUT). It can be installed instead of the pressure transmitter.
The machine must be stopped when the gas reaches a certain pressure, see Wiring Diagram Pressure Switch [► 31].

2.5.6 Vibration Analysis System
The vibration analysis system monitors the correct mechanical operation of the machine.
This unit is composed of a vibration sensor (SA) and a transmitter (delivered loose).
The machine must be stopped when the vibration limit value (preset at the factory) is reached, see Wiring Diagram Vibration Sensor [► 32].

2.5.7 Mechanical Seals
The sealing systems can be equipped with mechanical seals. The following variants are possible:
- Oil lubricated single mechanical seals on the motor side and labyrinth seals on the suction side.
- Oil lubricated single mechanical seals on the motor side and suction side.
2.5.8 Liquid Flushing Device

The liquid flushing device allows the machine to be flushed with the appropriate liquid according to the process type. The system consists of a solenoid valve which enables to open and close the flushing liquid circuit.

Furthermore, two level switches (LS-/0201 and LS-/0202) monitor the flushing liquid quantity.

<table>
<thead>
<tr>
<th>Upper level switch (LS-/0201)</th>
<th>Early warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower level switch (LS-/0202)</td>
<td>Trip, the flushing must be stopped</td>
</tr>
</tbody>
</table>

2.5.9 Terminal box

The machine can be optionally equipped with one or two terminal boxes. All electrical devices, except the motor, are already wired to the terminal box.

2.6 Explanation of ATEX Classification

The ATEX classification is written on the nameplate of the machine (NP), see below a marking example:

- **Inside (i)**
- **Outside (o)**

<table>
<thead>
<tr>
<th>Explosion group inside the machine</th>
<th>Equipment category for explosive gases inside the machine</th>
<th>Equipment group II (not for mining application)</th>
<th>Explosion protection inside the machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 2G IIB T3 X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explosion group outside the machine</th>
<th>Equipment category for gas and dust outside the machine</th>
<th>Temperature class outside the machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 2G IIB T3 X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design approved according to ATEX Directive</th>
</tr>
</thead>
</table>

* The specific operating conditions are determined in this instruction manual.

2.6.1 ATEX Nameplate

The machine has two different nameplates:
- A nameplate (NP1) is fixed on the base frame of the machine with the ATEX marking inscription.
- A second nameplate (NP2) is fixed on the machine stage (module) identifying that the stage is suitable for ATEX certified machine.

This allows the preservation of the machine ATEX certification if the machine stage should be replaced.
2.7 Safety concept

WARNING

Misinterpretation of the ATEX instructions.

Risk of severe injury!

Risk of explosion!

- Make sure that the recommendations described in this manual correspond to the ATEX marking written on the nameplate (NP).
- If anything needs to be clarified, please contact your Busch representative.

The safety concept is based on the prevention of sparks and excessive temperatures by means of various accessories.

The monitoring devices must be integrated into the system control such that operation of the machine will be inhibited if the safety limit values are exceeded.

2.7.1 ATEX Classifications and Associated Accessories

The following table defines the obligatory accessories depending on the ATEX classification.

<table>
<thead>
<tr>
<th>ATEX classification</th>
<th>TSA+/0102</th>
<th>TSA+/0103</th>
<th>PS+/0301</th>
<th>FS-/0501</th>
<th>SA+/0701</th>
<th>ATEX MOT IIB</th>
<th>ATEX MOT IIC</th>
<th>ATEX CPL</th>
<th>IS</th>
<th>ECP</th>
<th>MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td></td>
<td>MV4 (MV2)**</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td></td>
<td>MV4 (MV2)**</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td></td>
<td></td>
<td>(X)**</td>
<td>X</td>
<td></td>
<td>MV4 (MV2)**</td>
</tr>
<tr>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td>MV2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td>MV2</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>MV2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)**</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>MV4 (MV2)**</td>
</tr>
</tbody>
</table>

* temperature class: T2 for NC 0630 C and T3 for NC 0600 C

** recommended

<table>
<thead>
<tr>
<th>CPL</th>
<th>Coupling</th>
<th>ECP</th>
<th>Pump earth connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Flow switch</td>
<td>IS</td>
<td>Inlet screen</td>
</tr>
<tr>
<td>MOT</td>
<td>Motor (IIB or IIC)</td>
<td>MV</td>
<td>Solenoid valve</td>
</tr>
<tr>
<td>PSA</td>
<td>Pressure transmitter</td>
<td>PS</td>
<td>Pressure switch</td>
</tr>
<tr>
<td>SA</td>
<td>Vibration transmitter</td>
<td>TSA</td>
<td>Resistance thermometer</td>
</tr>
</tbody>
</table>
2.7.2 P&ID "Piping and Instrumentation Diagram"

P&ID for classification A, B, C and G

Flushing liquid device

Purging gas system

Barrier gas system

Dilution gas system

Obligatory for classification G

= optional

<table>
<thead>
<tr>
<th>CLP</th>
<th>Cooling liquid pump</th>
<th>CPL</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVI</td>
<td>Cooling water inlet</td>
<td>CWO</td>
<td>Cooling water outlet</td>
</tr>
<tr>
<td>FLV</td>
<td>Flushing liquid vessel</td>
<td>FME</td>
<td>Flow meter</td>
</tr>
<tr>
<td>FS</td>
<td>Flow switch</td>
<td>GB</td>
<td>Gas ballast valve</td>
</tr>
<tr>
<td>GC</td>
<td>Gas connection</td>
<td>IN</td>
<td>Suction connection</td>
</tr>
<tr>
<td>IS</td>
<td>Inlet screen</td>
<td>LS</td>
<td>Level switch</td>
</tr>
<tr>
<td>MAN</td>
<td>Manometer</td>
<td>MOT</td>
<td>Motor</td>
</tr>
<tr>
<td>MV</td>
<td>Solenoid valve</td>
<td>NIF</td>
<td>Nitrogen inlet filter</td>
</tr>
<tr>
<td>NRV</td>
<td>Non-return valve</td>
<td>OUT</td>
<td>Discharge connection</td>
</tr>
<tr>
<td>PHE</td>
<td>Plate heat exchanger</td>
<td>PSA</td>
<td>Pressure transmitter</td>
</tr>
<tr>
<td>PS</td>
<td>Pressure switch</td>
<td>SA</td>
<td>Vibration transmitter</td>
</tr>
<tr>
<td>SI</td>
<td>Silencer</td>
<td>TSA</td>
<td>Resistance thermometer</td>
</tr>
<tr>
<td>TTV</td>
<td>Three-way thermostatic valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P&ID for classification D, E and F

<table>
<thead>
<tr>
<th>CLP</th>
<th>Cooling liquid pump</th>
<th>CPL</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWI</td>
<td>Cooling water inlet</td>
<td>CWO</td>
<td>Cooling water outlet</td>
</tr>
<tr>
<td>FLV</td>
<td>Flushing liquid vessel</td>
<td>FME</td>
<td>Flow meter</td>
</tr>
<tr>
<td>FS</td>
<td>Flow switch</td>
<td>GB</td>
<td>Gas ballast valve</td>
</tr>
<tr>
<td>GC</td>
<td>Gas connection</td>
<td>IN</td>
<td>Suction connection</td>
</tr>
<tr>
<td>IS</td>
<td>Inlet screen</td>
<td>LS</td>
<td>Level switch</td>
</tr>
<tr>
<td>MAN</td>
<td>Manometer</td>
<td>MOT</td>
<td>Motor</td>
</tr>
<tr>
<td>MV</td>
<td>Solenoid valve</td>
<td>NIF</td>
<td>Nitrogen inlet filter</td>
</tr>
<tr>
<td>NRV</td>
<td>Non-return valve</td>
<td>OUT</td>
<td>Discharge connection</td>
</tr>
<tr>
<td>PHE</td>
<td>Plate heat exchanger</td>
<td>PSA</td>
<td>Pressure transmitter</td>
</tr>
<tr>
<td>PS</td>
<td>Pressure switch</td>
<td>SA</td>
<td>Vibration transmitter</td>
</tr>
<tr>
<td>SI</td>
<td>Silencer</td>
<td>TSA</td>
<td>Resistance thermometer</td>
</tr>
<tr>
<td>TTV</td>
<td>Three-way thermostatic valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= optional
3 Transport

WARNING

Suspended load.

Risk of severe injury!

- Do not walk, stand or work under suspended loads.

NOTICE

In case the machine is already filled with oil.

Tilting a machine that is already filled with oil can cause large quantities of oil to ingress into the cylinder.

- Drain the oil prior to every transport or always horizontally transport the machine.

- Make sure that the eyebolt (EB) is in faultless condition, fully screwed in and tightened by hand.

WARNING

Lifting the machine using the motor eye bolt.

Risk of severe injury!

- Do not lift the machine using the eye bolt fitted to the motor. Only lift the machine as previously shown.

- Check the machine for transport damage.

If the machine is secured to a base plate:

- Remove the machine from the base plate.

4 Storage

- Seal all apertures with adhesive tape or reuse provided caps.

If the machine is to be stored for more than 3 months:

- Wrap the machine in a corrosion inhibiting film.

- Store the machine indoors, dry, dust free and if possible in original packaging preferably at temperatures between 5 ... 55 °C.
5 Installation

5.1 Installation Conditions

WARNING

The installation conditions are not respected in an ATEX environment.

Risk of severe injury!

Risk of explosion!

- Take care that the installation conditions are met.

NOTICE

Use of the machine outside of the permitted installation conditions.

Risk of premature failure!

Loss of efficiency!

- Take care that the installation conditions are fully complied with.

- Make sure that the environment of the machine complies with the ATEX classification of the machine according to the data given on the nameplate of the motor and the nameplate of the machine (NP).

- Make sure that the ambient conditions comply with the Technical Data [► 50].

- Make sure that the environmental conditions comply with the protection class of the motor and the electrical instruments.

- Make sure that the installation space or location is vented such that sufficient cooling of the machine is provided.

- Make sure that cooling air inlets and outlets of the motor fan are not covered or obstructed and that the cooling air flow is not affected adversely in any other way.

- Make sure that the oil sight glass (OSG) remains easily visible.

- Make sure that enough space remains for maintenance work.

- Make sure that the machine is placed or mounted horizontally, a maximum of 1° in any direction is acceptable.

- Check the oil level, see Oil Level Inspection [► 39].

- Check the cooling liquid level, see Cooling Liquid Level Inspection [► 40].

- Make sure that the cooling water complies with the requirements, see Cooling Water Connection [► 18].

If the machine is installed at an altitude greater than 1000 meters above sea level:

- Contact your Busch representative, the motor should be derated or the ambient temperature limited.

If additional electrical components not included in scope of delivery should be added:

- Make sure that they have a better or equal ATEX classification than that of the machine, see the ATEX marking on the nameplate (NP).

For classification type “C” and “F” (see ATEX Classifications and Associated Accessories [► 11]):

- Make sure that the installation space or location is ventilated enough in order to prevent the formation of an explosive area.
5.2 Connecting Lines / Pipes

- Remove all protective caps before installation.
- Make sure that the connections are gas tight.
- Make sure that the connection lines cause no stress on the machine's connection; if necessary use flexible joints.
- Make sure that the line size of the connection lines over the entire length is at least as large as the connections of the machine.

In case of very long connection lines it is advisable to use larger line sizes in order to avoid a loss of efficiency. Seek advice from your Busch representative.

WARNING
The connection lines can build up an electrostatic charge.

Risk of severe injury!
Risk of explosion!
- The connection lines must be made out of conductive material or provisions must be made against creating an electrostatic charge.

5.2.1 Suction Connection

WARNING
Unprotected suction connection.

Risk of severe injury!
- Do not put hand or fingers in the suction connection.

NOTICE
Ingress of foreign objects or liquids.

Risk of damage to the machine!
If the inlet gas contains dust or other foreign solid particles:
- Install a suitable filter (5 micron or less) upstream from the machine.

Connection size:
- DN100 ISO-K, DIN 28404
If a purge gas system or a liquid flushing device being installed:
- DN100 PN16, EN 1092-1
If the machine is used as part of a vacuum system:
- Busch recommends the installation of an isolation valve in order to prevent the machine from turning backwards.
5.2.2 Discharge Connection

Connection size:

At the machine discharge connection:
- DN100 ISO-K, DIN 28404

At the silencer (SI) discharge connection (two optional versions available):
- DN80 PN16 + ANSI/ASME B16.5-3” class 150 lbs
- R3

• Make sure that the discharged gas will flow without obstruction. Do not shut off or throttle the discharge line or use it as a pressurised air source.
• Make sure that the counter pressure (also termed back pressure) at the discharge connection (OUT) does not exceed the maximum allowable discharge pressure, see Technical Data [► 50].
5.2.3 Cooling Water Connection

- Connect the cooling water connections (CWI / CWO) to the water supply.

Connection size:
- G1/2, ISO 228-1 (CWI / CWO)

- Make sure that the cooling water complies with the following requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply capacity</td>
<td>l/min 12</td>
</tr>
<tr>
<td>Water pressure</td>
<td>bar 1 ... 6</td>
</tr>
<tr>
<td>Supply temperature</td>
<td>°C +5 ... +30</td>
</tr>
<tr>
<td>Required pressure differential</td>
<td>bar ≥ 1</td>
</tr>
</tbody>
</table>

- To reduce the maintenance effort and ensure a long product lifetime we recommend the following cooling water quality:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>mg/l (ppm) < 90</td>
</tr>
<tr>
<td>Properties</td>
<td>Clean & clear</td>
</tr>
<tr>
<td>PH value</td>
<td>7 ... 8</td>
</tr>
<tr>
<td>Particle size</td>
<td>µm < 200</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/l < 100</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>µS/cm ≤ 100</td>
</tr>
<tr>
<td>Free chloride</td>
<td>mg/l < 0.3</td>
</tr>
<tr>
<td>Materials in contact with the</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>cooling water</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Water hardness unit conversion.

1 mg/l (ppm) = 0.056 °dh (german degree) = 0.07 °e (english degree) = 0.1 °fH (french degree)
5.2.4 Barrier Gas System Connection

• Connect the barrier gas connection (BGC) to the gas supply.

Connection size:
 – G1/4, ISO 228-1

• Electrically connect the solenoid valve (MV), see Wiring Diagram Solenoid Valve [► 29].

• Electrically connect the flow switch (FS) of the flow meter, see Wiring Diagram Flow Switch [► 33].

• Make sure that the gas complies with the following requirements:

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Dry nitrogen or air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum gas pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Recommended pressure setting at the pressure regulating valve (PRV)</td>
<td>bar</td>
</tr>
<tr>
<td>Filtration</td>
<td>µm</td>
</tr>
<tr>
<td>Recommended flow rate</td>
<td>SLM*</td>
</tr>
</tbody>
</table>

* standard litre per minute
5.2.5 Dilution Gas System Connection (Optional)

- Connect the dilution gas connection (DGC) to the gas supply.

 Connection size:
 - G1/4, ISO 228-1

 - Electrically connect the solenoid valve (MV), see Wiring Diagram Solenoid Valve [► 29].

 If a flow switch is installed:

 - Electrically connect the flow switch (FS) of the flow meter, see Wiring Diagram Flow Switch [► 33].

 - Make sure that the gas complies with the following requirements:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas type</td>
<td>Dry nitrogen</td>
</tr>
<tr>
<td>Gas temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum gas pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Recommended pressure setting at the pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Filtration</td>
<td>µm</td>
</tr>
<tr>
<td>Recommended flow rate</td>
<td>SLM*</td>
</tr>
<tr>
<td>* standard litre per minute</td>
<td></td>
</tr>
</tbody>
</table>

- Make sure that the gas complies with the following requirements:
5.2.6 Purge Gas System Connection

<table>
<thead>
<tr>
<th>PGC</th>
<th>Purge gas connection</th>
<th>FME</th>
<th>Flow meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>Flow regulator</td>
<td>FS</td>
<td>Flow switch</td>
</tr>
<tr>
<td>INF</td>
<td>Inlet flange</td>
<td>MAN</td>
<td>Manometer</td>
</tr>
<tr>
<td>MV</td>
<td>Solenoid valve</td>
<td>NIP</td>
<td>Nitrogen panel</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure regulating valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Connect the purge gas connection to the gas supply.
- **Connection size:**
 - G1/4, ISO 228-1
- Electrically connect the solenoid valve (MV), see Wiring Diagram Solenoid Valve [► 29].

If a flow switch is installed:
- Electrically connect the flow switch (FS) of the flow meter, see Wiring Diagram Flow Switch [► 33].

- Make sure that the gas complies with the following requirements:

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Dry nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas temperature</td>
<td>ºC</td>
</tr>
<tr>
<td>Maximum gas pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Recommended pressure setting at the pressure regulating valve (PRV)</td>
<td>bar</td>
</tr>
<tr>
<td>Filtration</td>
<td>µm</td>
</tr>
<tr>
<td>Recommended flow rate</td>
<td>SLM*</td>
</tr>
</tbody>
</table>

* standard litre per minute
5.3 Earth Connection

In order to prevent the machine from creating an electrostatic charge:

- Connect the earth connection of the machine (ECP)

5.4 Filling Oil

NOTICE

Use of an inappropriate oil.

Risk of premature failure!

Loss of efficiency!

- Only use an oil type which has previously been approved and recommended by Busch.
For oil type and oil capacity see Technical Data [► 50] and Oil [► 50].

Oil filling at the motor side

Check oil level

Oil filling at the suction side

Check oil level
When the oil filling is achieved:

- Write down the oil change date on the sticker.

If there is no sticker (part no. 0565 568 959) on the machine:

- Order it from your Busch representative.

5.5 Filling Cooling Liquid

For cooling liquid type and cooling liquid capacity see Technical Data [50] and Cooling Liquid [50].
5.6 Liquid Flushing Device Installation (Optional)

- Electrically connect the solenoid valve (MV), see Wiring Diagram Solenoid Valve [► 29].
- Electrically connect the two level switches (LS), see Wiring Diagram Level Switch [► 33].
- Fill the flushing liquid vessel (FLV) with a process compatible flushing liquid.
5.7 Fitting the Coupling

In case of a machine delivery without motor:

- Make sure that the ATEX marking of the coupling corresponds to the ATEX classification of the machine.
- Fit the second coupling hub on the motor shaft (separately delivered).
- Axially adjust the hub in such a way until value “E” is reached.
- When the coupling adjustment is done, lock the coupling hub by tightening the radial screw.
- Mount the motor on the machine by including the coupling spider.

For further coupling information, go to www.ktr.com and download the instruction manual of the ROTEX® coupling.

5.8 Electrical Connection

DANGER

Live wires.

Risk of electrical shock.

- Electrical installation work must only be executed by qualified personnel.
- Make sure that the power supply for the motor is compatible with the data on the nameplate of the motor.
- The electrical installation must comply with applicable national and international standards.
- Provide a lockable disconnect switch on the power line so that the machine is completely secured during maintenance tasks.
- Provide an overload protection according to EN 60204-1 for the motor.
- Make sure that the motor of the machine will not be affected by electric or electromagnetic disturbance from the mains; if necessary seek advice from Busch.
- Connect the protective earth conductor.
• Electrically connect the motor.

⚠️ NOTICE

The admissible motor nominal speed exceeds the recommendation.

Risk of damage to the machine!
• Check the admissible motor nominal speed \(n_{\text{max}}\) on the nameplate of the machine (NP).
• Make sure to comply with it.
• Consult the Technical Data [► 50] to get more information.

⚠️ NOTICE

The motor frequency is below 20 Hz.

Risk of damage to the machine!
• The motor nominal speed must always be higher than 1200 min\(^{-1}\) (20 Hz).

⚠️ NOTICE

Incorrect connection.

Risk of damage to the motor!
• The wiring diagrams given below are typical. Check the inside of the terminal box for motor connection instructions/diagrams.

5.8.1 Wiring Diagram Three-Phase Motor (Pump Drive)

Delta connection (low voltage):

Star connection (high voltage):

Double star connection, multi-voltage motor with 12 pins (low voltage):

Star connection, multi-voltage motor with 12 pins (high voltage):
Delta connection, multi-voltage motor with 12 pins (middle voltage):

![Motor Diagram]

NOTICE

Incorrect direction of rotation.

Risk of damage to the machine!

- Operation in the wrong direction of rotation can destroy the machine in a short time!

 Prior to start-up, ensure that the machine is operated in the right direction.

The intended rotation direction of the motor is defined by the illustration below:

- Jog the motor briefly.
- Watch the fan wheel of the motor and determine the direction of rotation just before the fan wheel stops.

If the rotation of the motor must be changed:

- Switch any two of the motor phase wires.
5.8.2 Wiring Diagram Solenoid Valve

![Diagram of solenoid valve](image)

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Supplier reference</th>
<th>P&ID position</th>
<th>Specifications</th>
<th>Maintenance procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0654 000 092</td>
<td>Parker Lucifer 495905 C2</td>
<td>MV2 ; MV4 ; MV5 ; MV6</td>
<td>DN 3 with seal in FFKM Ex db mb IIC T4 U, = 24 VDC</td>
<td>Procedure G [► 45]</td>
</tr>
<tr>
<td>0654 538 544</td>
<td>Parker Lucifer 495910 N7</td>
<td>MV2 ; MV4 ; MV5</td>
<td>DN 1.5 with seal in PUR Ex ia IIC T4 U, = 24 VDC</td>
<td>Procedure G [► 45]</td>
</tr>
<tr>
<td>0654 532 461</td>
<td>Bürkert Type 262 (pneumatic) Type 6014 C (electric)</td>
<td>MV2 ; MV4 ; MV5 ; MV7</td>
<td>DN 12 with seal in PTFE pneumatic 3.3 ... 6 bar Ex ia IIC T6 U, = 24 VDC</td>
<td>Procedure G [► 45] or Procedure H [► 45]</td>
</tr>
<tr>
<td>0654 547 028</td>
<td>Parker Lucifer 495905 F4</td>
<td>MV2 ; MV4 ; MV5</td>
<td>DN 3 with seal in FFKM Ex dm IIC T4 U, = 230 VAC</td>
<td>Procedure G [► 45]</td>
</tr>
<tr>
<td>0654 552 169</td>
<td>Parker Lucifer 495910 N7</td>
<td>MV6</td>
<td>DN 1.5 with seal in Rubis Ex ia IIC T6 U, = 24 VDC</td>
<td>Procedure H [► 45]</td>
</tr>
<tr>
<td>0654 536 403</td>
<td>Bürkert Typ 6014</td>
<td>MV6</td>
<td>DN 0.9 with seal in PFM Ex ia IIC T6 U, = 24 VDC</td>
<td>Procedure H [► 45]</td>
</tr>
<tr>
<td>0654 518 062</td>
<td>Parker Lucifer 495905 C2</td>
<td>MV7</td>
<td>DN 12 with seal in FKM Ex db mb IIC T6 U, = 24 VDC</td>
<td>Procedure H [► 45]</td>
</tr>
<tr>
<td>0654 545 633</td>
<td>Parker Lucifer 483580.01</td>
<td>MV7</td>
<td>DN 15 with seal in PTFE pneumatic 3.5 ... 10 bar Ex ia IIC T6 U, = 24 VDC</td>
<td>Procedure H [► 45]</td>
</tr>
<tr>
<td>0654 518 061</td>
<td>Parker Lucifer 495905 F4</td>
<td>MV7</td>
<td>DN 12 with seal in FKM Ex d mb II T3/T4 U, = 230 VAC</td>
<td>Procedure H [► 45]</td>
</tr>
</tbody>
</table>
5.9 Electrical Connection of the Monitoring Devices

NOTE

In order to prevent potential nuisance alarms, Busch allows that the control system is configured with a time delay of 2 seconds.

NOTE

The accessories below are considered as standard.
If other specific components should be used, refer to the instruction manual of the accessory in question.

5.9.1 Wiring Diagram Resistance Thermometer

Part no.:
- PT100: 0651 550 436
- Transmitter: 0643 536 800

Supplier reference:
- PT100: Albert Balzer AG
 ref. TWBa-ADX50XG1/4X90DACB
- Transmitter: Endress+Hauser
 ref. TMT 187-B41FJA

Maintenance procedure:
Procedure A [► 44]

P&ID position:
- TSA+/0102 “cooling liquid temp.”
- TSA+/0103 “exhaust gas temp.”

Electrical data:
- \(U_i = 30 \text{ VDC} \); \(I_i = 100 \text{ mA} \); \(P_i = 750 \text{ mW} \); \(L_i = 0 \text{ mH} \); \(C_i = 0 \text{ pF} \)
- 4 ... 20 mA ▶ 0 ... 300 °C

Warning signal:
- \(T_{\text{warning}} (\text{TSA+/0102}) = 60\text{°C} \) ▶ 7.2 mA (for NC 0600 C)
- \(T_{\text{warning}} (\text{TSA+/0102}) = 65\text{°C} \) ▶ 7.47 mA (for NC 0630 C)
- \(T_{\text{warning}} (\text{TSA+/0103}) = 180\text{°C} \) ▶ 13.6 mA (for NC 0600 C)
- \(T_{\text{warning}} (\text{TSA+/0103}) = 230\text{°C} \) ▶ 16.27 mA (for NC 0630 C)

Trip signal:
- \(T_{\text{trip}} (\text{TSA+/0102}) = 65\text{°C} \) ▶ 7.47 mA (for NC 0600 C)
- \(T_{\text{trip}} (\text{TSA+/0102}) = 70\text{°C} \) ▶ 7.73 mA (for NC 0630 C)
- \(T_{\text{trip}} (\text{TSA+/0103}) = 190\text{°C} \) ▶ 14.13 mA (for NC 0600 C)
- \(T_{\text{trip}} (\text{TSA+/0103}) = 240\text{°C} \) ▶ 16.8 mA (for NC 0630 C)
5.9.2 Wiring Diagram Pressure Switch

Part no.: 0653 539 030
Supplier reference: United Electric Controls H100 (100 Series)

Maintenance procedure:
Procedure B [44]
P&ID position: PS+/0301

Electrical data:
U_i = 49 VDC ; I_i = 3 A ; L_i = 0 µH ; C_i = 0 pF

Contact: Normally closed

Switch point: P (PS+/0301) = 1200 hPa (mbar) abs. (factory default adjustment)

5.9.3 Wiring Diagram Pressure Transmitter

Part no.:
- 0653 537 031 or
- 0653 541 862 (Hastelloy®) or
- 0653 206 492 or
- 0653 212 111 (Hastelloy®)

Supplier reference: ACS Precont Ex S10

Maintenance procedure:
Procedure C [44]

Connector: M12x1, 4-pin
P&ID position: PSA+/0301

Electrical data (0653 537 031 / 0653 541 862):
U_i = 30 VDC ; I_i = 300 mA ; P_i = 0.9 W ; L_i = 110 µH ; C_i = 19 nF
4 ... 20 mA ➤ 0 ... 300 mbar (relative)

Electrical data (0653 206 492 / 0653 212 111):
U_i = 30 VDC ; I_i = 300 mA ; P_i = 0.9 W ; L_i = 110 µH ; C_i = 19 nF
4 ... 20 mA ➤ -100 ... 400 mbar (relative)

Warning signal: a warning signal can be set prior to the trip signal.

Trip signal (0653 537 031 / 0653 541 862):
P_{trip} (PSA+/0301) = 0.2* bar ➤ 14.67 mA

Trip signal (0653 206 492 / 0653 212 111):
P_{trip} (PSA+/0301) = 0.2* bar ➤ 13.6 mA

*1200 hPa (mbar) abs.
5.9.4 Wiring Diagram Vibration Sensor

WARNING

Another sensor type.

Risk of severe injury!

Risk of explosion!

- Only the following sensor type(s) has (have) been approved by Busch and it (they) cannot be replaced by another one.

NOTE

The wiring diagram is separately provided (specific sheet) with the machine.

Part no.:
- Vibration sensor “CTC”: 0658 569 597
- Vibration sensor “ifm”: 0658 563 623
- Measuring transmitter: 0646 564 555

Supplier reference:
- Vibration sensor “CTC”: Connection Technology Center (CTC) AC915-9C
- Vibration sensor “ifm”: ifm electronic VSP01A
- Measuring transmitter: ifm electronic VSE100 ► not ATEX certified, install an intrinsic safety barrier.

Maintenance procedure: Procedure D [► 45]

P&ID position: SA+/0701

Electrical data:
- U = 24 VDC ; I = 200 mA

<table>
<thead>
<tr>
<th></th>
<th>Normal operation</th>
<th>Warning signal</th>
<th>Trip signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital output I/O 1</td>
<td>24 V (100 mA)</td>
<td>0 V</td>
<td>0 V</td>
</tr>
<tr>
<td>Output 2</td>
<td>24 V (100 mA)</td>
<td>24 V (100 mA)</td>
<td>0 V</td>
</tr>
<tr>
<td>Output 1 analog signal</td>
<td>4 to 15 mA</td>
<td>>15 to 18 mA</td>
<td>>18 mA</td>
</tr>
</tbody>
</table>

NOTE

An intrinsic safety barrier must be installed between the vibration sensor and the measuring transmitter to prevent any fault voltage in the hazardous area.

For example: STAHL 9001/01-280-085-101

The intrinsic safety barrier is not included in the scope of delivery of Ateliers Busch SA.
5.9.5 Wiring Diagram Flow Switch

Part no.: No Busch ref. (integrated into the flow meter)

Supplier reference: Pepperl+Fuchs RC15-14-N3

Maintenance procedure: Procedure E [\(\Rightarrow\) 45]

P&ID position:
- FS-/0501 “barrier gas flow”
- FS-/0503 “purge gas flow”
- FS-/0504 “dilution gas flow”

Electrical data: \(U_i = 16\ \text{VDC} ; I_i = 1 \ldots 3\ \text{mA}\)

Switching element function: NAMUR, bistable

Contact: Normally open

Switch point:
- (FS-/0501) = 3 SLM barrier gas \(\Rightarrow\) min. volume flow
- (FS-/0503) = 100 SLM purge gas \(\Rightarrow\) min. volume flow
- (FS-/0504) = 25 SLM dilution gas \(\Rightarrow\) min. volume flow

5.9.6 Wiring Diagram Level Switch

Part no.: 0652 556 531

Supplier reference: Endress&Hauser FTL50/FEL58

Maintenance procedure: Procedure F [\(\Rightarrow\) 45]

Connector: M12x1, 4-pin

P&ID position: LS-/0201 & LS-/0202

Electrical data:
- \(U_i = 16\ \text{VDC} ; I_i = 52\ \text{mA} ; P_i = 0.17\ \text{W} ; C_i = 0\ \text{nF} ; L_i = 0\ \text{mH}\)

Switching element function: NAMUR

Contact: Normally closed

Switch point:
- \(L_{\text{warning}} = \text{LS-/0201} \Rightarrow\) pin 1 + 4 \(\Rightarrow\) low level “warning”
- \(L_{\text{trip}} = \text{LS-/0202} \Rightarrow\) pin 1 + 4 \(\Rightarrow\) low level “stop flushing”
5.10 Flowchart

The machine safety depends on the monitoring accessories sequencing according to the following flowchart.

- **Start**
- Time since startup > 4 min?
- NO
 - Cooling liquid temperature (optional if 3G(i))
 - TSA+/0102
 - T < T warning?
 - NO
 - Warning: High cooling liquid temperature!
 - YES
 - Warning: High gas temperature!
 - YES
 - Stop the machine with anomaly information
 - YES
 - NO
 - Stop button activated?
 - YES
 - Stop the machine
 - NO
 - Machine in function?
 - NO
 - Stop button activated?
 - YES
 - Stop the machine
 - NO
 - NO
 - YES
 - Start the machine

Additional sequences may be added if optional monitoring accessories have been installed.
6 Commissioning

⚠️ WARNING
The machine is still running after a monitoring device has tripped.

Risk of severe injury!
Risk of explosion!

• Follow the Trip Procedure.

⚠️ NOTICE
The machine can be shipped without oil.

Operation without oil will ruin the machine in short time!

• Prior to commissioning, the machine must be filled with oil, see Filling Oil [► 22].

⚠️ NOTICE
The machine can be shipped without cooling liquid.

Operation without cooling liquid will ruin the machine in short time!

• Prior to commissioning, the machine must be filled with cooling liquid, see Filling Cooling Liquid [► 24].

⚠️ NOTICE
Lubricating a dry running machine (compression chamber).

Risk of damage to the machine!

• Do not lubricate the compression chamber of the machine with oil or grease.

⚠️ CAUTION
During operation the surface of the machine may reach temperatures of more than 70°C.

Risk of burns!

• Avoid contact with the machine during and directly after operation.

⚠️ CAUTION
Noise of running machine.

Risk of damage to hearing!

If persons are present in the vicinity of a non noise insulated machine over extended periods:

• Make sure that ear protection is being used.

• Make sure that the installation conditions (see Installation Conditions [► 15]) are met.
If the machine corresponds to ATEX Classification “A”, “B”, “C” or “G” (see ATEX Classifications and Associated Accessories [► 11]):

- Make sure that the machine has been purged by an inert gas, see Gas Purging Procedure [► 37].
- Turn on the water supply.

If the machine is equipped with a barrier gas system:

- Turn on the barrier gas supply.
- Adjust the barrier gas pressure and volume flow.
- Switch on the machine.
- Make sure that the maximum permissible number of starts does not exceed 2 starts per hour. Those starts should be spread within the hour.
- Make sure that the operating conditions comply with the Technical Data [► 50].
- After a few minutes of operation, perform an Oil Level Inspection [► 39].
- After a few minutes of operation, perform a Cooling Liquid Level Inspection [► 40].

As soon as the machine is operated under normal operating conditions:

- Measure the motor current and record it as reference for future maintenance and troubleshooting work.

6.1 Conveying Condensable Vapours

The machine, equipped either with a gas ballast valve or a dilution gas system, is suitable for the conveyance of condensable vapours within the gas flow.

If condensable vapours are to be conveyed:

1. Open the gas ballast valve* or the dilution gas system* (solenoid valve)
2. Warm up the machine 30 minutes
3. Open the inlet valve
4. Perform the process
5. Close the inlet valve
6. Close the gas ballast valve* or the dilution gas system*

* optional accessories

- Continuously drain condensate from the condensate drain plug (CD) of the silencer (SI) (Optional).
6.2 Liquid Flushing Procedure
The machine can optionally be equipped with a liquid flushing device.
If after the application process a liquid flushing is required:

START
Reduce the motor speed to 10 Hz* with the inlet valve closed
Open the liquid flushing device (solenoid valve)
Adapt the flushing liquid flow acc. to the application requirements
The flushing duration depends on the application
Close the liquid flushing device
END

* minimum admissible frequency

6.3 Gas Purging Procedure
The machine can optionally be equipped with a purge gas system.
If after the application process a gas purge is required, i.e. after a liquid flushing sequence or to render the compression chamber inert:

START
Close the inlet valve
Open the purge gas (solenoid valve)
The flushing duration depends on the application
Close the purge gas
END
min. 200 seconds to render the machine inert
7 Maintenance

⚠️ WARNING
Machines contaminated with hazardous material.

Risk of poisoning!
Risk of infection!
If the machine is contaminated with hazardous material:
• Wear appropriate personal protective equipment.

⚠️ CAUTION
Hot surface.

Risk of burns!
• Prior to any action requiring touching the machine, let the machine cool down first.

⚠️ NOTICE
Using inappropriate cleaners.

Risk of removing safety stickers and protective paint!
• Do not use incompatible solvents to clean the machine.

⚠️ CAUTION
Failing to properly maintain the machine.

Risk of injuries!
Risk of premature failure and loss of efficiency!
• Respect the maintenance intervals or ask your Busch representative for service.
• Shut down the machine and lock against inadvertent start up.
• Turn off the water supply.

If the machine corresponds to ATEX Classification “A”, “B”, “C” or “G” (see ATEX Classifications and Associated Accessories [▷ 11]):
• Make sure that the machine has been purged by an inert gas, see Gas Purging Procedure [▷ 37].

If the machine is equipped with a barrier gas system:
• Close the barrier gas supply.
• Vent the connected lines to atmospheric pressure.
If necessary:
• Disconnect all connections.
7.1 Maintenance Schedule

The maintenance intervals depend very much on the individual operating conditions. The intervals given below are desired to be considered as starting values which should be shortened or extended as appropriate. Particularly harsh applications or heavy duty operation, such as high dust loads in the environment or in the process gas, other contamination or ingress of process material, can make it necessary to shorten the maintenance intervals significantly.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly</td>
<td>• Check the oil level, see Oil Level Inspection [39].</td>
</tr>
<tr>
<td></td>
<td>• Check the cooling liquid level, see Cooling Liquid Level Inspection [40].</td>
</tr>
<tr>
<td></td>
<td>• Check the machine for oil leaks - in case of leaks have the machine repaired (contact Busch).</td>
</tr>
<tr>
<td>Yearly</td>
<td>• Carry out a visual inspection and clean the machine from dust and dirt.</td>
</tr>
<tr>
<td></td>
<td>• Check the electrical connections and the monitoring devices.</td>
</tr>
<tr>
<td>Yearly</td>
<td>• Check the filter of the gas ballast valve (GB) and change it if necessary, see Replacing the Gas Ballast Filter (Optional) [40].</td>
</tr>
<tr>
<td>Yearly</td>
<td>• Check the inlet filter cartridge, change it if necessary.</td>
</tr>
<tr>
<td>Yearly</td>
<td>• Check the silence (SI) and clean it if necessary.</td>
</tr>
<tr>
<td>Every 5000 hours, at the latest after 1 year</td>
<td>• Change the oil of the gear and bearing housings (both sides), see Oil Change [40].</td>
</tr>
<tr>
<td></td>
<td>• Change the cooling liquid, see Cooling Liquid Change [43].</td>
</tr>
<tr>
<td></td>
<td>• Clean the magnetic plugs (MP).</td>
</tr>
<tr>
<td>Every 16000 hours, at the latest after 4 years</td>
<td>• Have a major overhaul on the machine (contact Busch).</td>
</tr>
</tbody>
</table>

7.2 Oil Level Inspection

• Shut down the machine.
• When the machine is stopped, wait 1 minute before checking the oil level.

• Fill up if necessary, see Oil Filling [22].
7.3 Cooling Liquid Level Inspection

- Shut down the machine.
- Let the machine cool down.
- Fill up if necessary, see Filling Cooling Liquid [► 24].

7.4 Replacing the Gas Ballast Filter (Optional)

Discard the part
Busch genuine spare parts
Gas ballast filter: part no. 0562 550 434

7.5 Oil Change

⚠️ NOTICE

Use of an inappropriate oil.
Risk of premature failure!
Loss of efficiency!
- Only use an oil type which has previously been approved and recommended by Busch.
Oil draining at the motor side

1. Cleaning cloth
2. Drain pan
3. Magnetic plug

Oil draining at the suction side

1. Cleaning cloth
2. Drain pan
3. Magnetic plug
4. Take out the plug
For oil type and oil capacity see Technical Data [≥ 50] and Oil [≥ 50].

Oil filling at the motor side

Oil filling at the suction side
When the oil filling is achieved:

- Write down the oil change date on the sticker.

If there is no sticker (part no. 0565 568 959) on the machine:

- Order it from your Busch representative.

7.6 Cooling Liquid Change
For cooling liquid type and cooling liquid capacity see Technical Data [► 50] and Cooling Liquid [► 50].

7.7 Calibration Procedure of the Electrical Devices

7.7.1 Procedure A
- Remove the resistance thermometer from the machine.
- Check it with a calibrated oven or send it to an approved laboratory for inspection.
- Reassemble the resistance thermometer on the machine.

7.7.2 Procedure B
- Remove the pressure switch from the machine.
- Compare it with another calibrated pressure switch or send it to an approved laboratory for inspection.
 It must trip when the pressure reaches the prescribed trip value.
- Reassemble the pressure switch on the machine.

7.7.3 Procedure C
- Remove the pressure transmitter from the machine.
- Compare it with another calibrated pressure transmitter or send it to an approved laboratory for inspection.
- Reassemble the pressure transmitter on the machine.
7.7.4 Procedure D
• Remove the vibration sensor from the machine.
• Control it with a calibration system or send it to:
• Reassemble the vibration sensor on the machine (8Nm).

7.7.5 Procedure E
• Check that the flow switch changes state when the ball of the flowmeter is passing.
 It is not necessary to disassemble the flowmeter or its switch.

7.7.6 Procedure F
• Check that the level switch changes state by using the test magnet.
• Hold the test magnet against the “target” marking.
• Make sure that the switching status is changed.
• Read the instruction manual of the level switch for more information.

7.7.7 Procedure G
• Check that the solenoid valve changes state by electrical supply.
• Perform a visual inspection of the solenoid valve sealing by means of the flowmeter in order to ensure that the device is still gas tight.

7.7.8 Procedure H
• Check that the solenoid valve changes state by electrical supply.
• Perform a visual inspection of the solenoid valve sealing and ensure that there is no liquid leak.

8 Overhaul

⚠️ NOTICE
Improper assembly.
Risk of premature failure!
Loss of efficiency!
• It is highly recommended that any dismantling of the machine that goes beyond anything that is described in this manual should be done through Busch.

⚠️ WARNING
Machines contaminated with hazardous material.
Risk of poisoning!
Risk of infection!
If the machine is contaminated with hazardous material:
• Wear appropriate personal protective equipment.

In case of the machine having conveyed gas that was contaminated with foreign materials which are dangerous to health:
• Decontaminate the machine as much as possible and state the contamination status in a ‘Declaration of Contamination’.

Busch will only accept machines that come with a completely filled in and legally binding signed ‘Declaration of Contamination’.

(Form downloadable from www.buschvacuum.com)

9 Decommissioning

• Shut down the machine and lock against inadvertent start up.
• Turn off the water supply.

If the machine corresponds to ATEX Classification “A”, “B”, “C” or “G” (see ATEX Classifications and Associated Accessories [► 11]):

• Make sure that the machine has been purged by an inert gas, see Gas Purging Procedure [► 37].

If the machine is equipped with a barrier gas system:

• Close the barrier gas supply.
• Vent the connected lines to atmospheric pressure.
• Disconnect all connections.

If the machine is going to be stored:

• See Storage [► 14].

9.1 Dismantling and Disposal

• Drain the oil.
• Drain the cooling liquid.
• Separate special waste from the machine.
• Dispose of special waste in compliance with applicable regulations.
• Dispose of the machine as scrap metal.
10 Spare Parts

NOTICE

Use of non-Busch genuine spare parts.

Risk of premature failure!

Loss of efficiency and ATEX compliance!

- The exclusive use of Busch genuine spare parts and consumables is recommended for the correct functioning of the machine and to validate the warranty.

There is no standard spare parts kits available for this product, if you require Busch genuine parts:

- Contact your Busch representative for the detailed spare parts list.

11 Troubleshooting

DANGER

Live wires.

Risk of electrical shock.

- Electrical installation work must only be executed by qualified personnel.

CAUTION

Hot surface.

Risk of burns!

- Prior to any action requiring touching the machine, let the machine cool down first.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The machine does not start.</td>
<td>The motor is not supplied with the correct voltage.</td>
<td>• Check the power supply.</td>
</tr>
<tr>
<td>The machine does not start.</td>
<td>The rotors are jammed or seized.</td>
<td>• Turn the screw rotors manually from the rotor access plug (PMR). • Repair the machine (contact Busch).</td>
</tr>
<tr>
<td>Solid foreign matter has entered the machine.</td>
<td></td>
<td>• Remove the solid foreign matter or repair the machine (contact Busch). • Install an inlet filter if necessary.</td>
</tr>
<tr>
<td>A temperature sensor has reached the switch point.</td>
<td></td>
<td>• Let the machine cool down. • See problem “The machine runs too hot”.</td>
</tr>
<tr>
<td>Corrosion in the machine from remaining condensate.</td>
<td></td>
<td>• Repair the machine. • Check the process and follow the recommendation in case of Conveying Condensable Vapours [► 36].</td>
</tr>
<tr>
<td>The motor is defective.</td>
<td></td>
<td>• Replace the motor.</td>
</tr>
<tr>
<td>The machine does not reach the usual pressure on the suction connection.</td>
<td>Suction or discharge lines too long or section diameter too small.</td>
<td>• Use larger diameter or shorter lines. • Seek advice from your local Busch representative.</td>
</tr>
<tr>
<td>Process deposits on the pumping components</td>
<td></td>
<td>• Flush the machine.</td>
</tr>
<tr>
<td>If an inlet screen or an inlet filter is installed, it can be partially clogged.</td>
<td></td>
<td>• Clean the inlet screen or replace the inlet filter cartridge.</td>
</tr>
<tr>
<td>The machine runs in the wrong direction.</td>
<td></td>
<td>• Check the direction of rotation, see Wiring Diagram Three-Phase Motor (Pump Drive) [► 27].</td>
</tr>
<tr>
<td>Internal parts are worn or damaged.</td>
<td></td>
<td>• Repair the machine (contact Busch).</td>
</tr>
<tr>
<td>The machine runs very noisily.</td>
<td>Wrong oil quantity or unsuitable oil type.</td>
<td>• Use one of the recommended oils in the correct quantity, see Oil [► 50].</td>
</tr>
<tr>
<td></td>
<td>Defective gears, bearings or coupling element.</td>
<td>• Repair machine (contact Busch).</td>
</tr>
<tr>
<td>The machine runs too hot.</td>
<td>Insufficient cooling.</td>
<td>• Make sure to comply with the cooling water requirements, see Cooling Water Connection [► 18].</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature too high.</td>
<td>• Observe the permitted ambient temperature, see Technical Data [► 50].</td>
</tr>
<tr>
<td></td>
<td>Temperature of the process gases at the inlet too high.</td>
<td>• Observe the permitted gas inlet temperature, see Technical Data [► 50].</td>
</tr>
<tr>
<td></td>
<td>The cooling water pump is defective.</td>
<td>• Repair the machine.</td>
</tr>
<tr>
<td></td>
<td>Oil level too low.</td>
<td>• Top up oil.</td>
</tr>
<tr>
<td>The oil is black.</td>
<td>Oil change intervals are too long.</td>
<td>• Drain the oil and fill in new oil, see Oil Change [► 40].</td>
</tr>
<tr>
<td></td>
<td>The machine runs too hot.</td>
<td>• See problem "The machine runs too hot".</td>
</tr>
</tbody>
</table>

For the solution of problems not mentioned in the troubleshooting chart contact your Busch representative.
12 Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NC 0600 C</th>
<th>NC 0630 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping speed (50Hz / 60Hz)</td>
<td>m³/h</td>
<td>600 / 600</td>
</tr>
<tr>
<td>Ultimate pressure (without gas ballast)</td>
<td>hPa (mbar) abs.</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Ultimate pressure (with gas ballast)</td>
<td>hPa (mbar) abs.</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Nominal motor rating (50Hz / 60Hz)</td>
<td>kW</td>
<td>18.5 / 18.5</td>
</tr>
<tr>
<td>Nominal motor speed (50Hz / 60Hz)</td>
<td>min⁻¹</td>
<td>3000 / 3600</td>
</tr>
<tr>
<td>Noise level (EN ISO 2151) (50Hz / 60Hz)</td>
<td>dB(A)</td>
<td>≤74 / ≤76</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>°C</td>
<td>5 … 40</td>
</tr>
<tr>
<td>Max. allowable counter pressure at the discharge</td>
<td>hPa (mbar)</td>
<td>200</td>
</tr>
<tr>
<td>Max. allowable gas inlet temperature</td>
<td>°C</td>
<td>70</td>
</tr>
<tr>
<td>Relative humidity at 30 °C</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>Ambient pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water requirements</td>
<td></td>
<td>See Cooling Water Connection [18]</td>
</tr>
<tr>
<td>Oil capacity - motor side</td>
<td>l</td>
<td>1.7</td>
</tr>
<tr>
<td>Oil capacity - suction side</td>
<td>l</td>
<td>0.6</td>
</tr>
<tr>
<td>Cooling liquid capacity approx.</td>
<td>l</td>
<td>29</td>
</tr>
<tr>
<td>Weight approx.</td>
<td>kg</td>
<td>600</td>
</tr>
</tbody>
</table>

13 Cooling Liquid

<table>
<thead>
<tr>
<th>Zitrec M-25 (ready-to-use)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number 5 L packaging</td>
<td>0831 563 469</td>
</tr>
<tr>
<td>Part number 25 L packaging</td>
<td>0831 563 468</td>
</tr>
</tbody>
</table>

The cooling liquid Zitrec M-25 is ready-to-use and does not require additional water. For further information, consult the website www.arteco-coolants.com.

14 Oil

<table>
<thead>
<tr>
<th>VE 101</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO-VG</td>
<td>100</td>
</tr>
<tr>
<td>Part number 1 L packaging</td>
<td>0831 000 099</td>
</tr>
<tr>
<td>Part number 5 L packaging</td>
<td>0831 000 100</td>
</tr>
</tbody>
</table>
15 EU Declaration of Conformity

This Declaration of Conformity and the CE-mark affixed to the nameplate are valid for the machine within the Busch scope of delivery. This Declaration of Conformity is issued under the sole responsibility of the manufacturer. When this machine is integrated into a superordinate machinery the manufacturer of the superordinate machinery (this can be the operating company, too) must conduct the conformity assessment process for the superordinate machine or plant, issue the Declaration of Conformity for it and affix the CE-mark.

The manufacturer

Ateliers Busch S.A.
Zone Industrielle
CH-2906 Chevenez

declares that the machine(s) COBRA ‘ATEX’ NC 0600 C; NC/NT/NX 0630 C

with the serial number:

has (have) been manufactured in accordance with the European Directives:

- ‘Machinery’ 2006/42/EC
- ‘ATEX Directive’ 2014/34/EU, for use in potentially explosive areas according to classification written on the machine nameplate
- ‘Electromagnetic Compatibility’ 2014/30/EU

and following the standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title of the Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 12100:2010</td>
<td>Safety of machinery - Basic concepts, general principles of design</td>
</tr>
<tr>
<td>EN 13857:2008</td>
<td>Safety of machinery - Safety distances to prevent hazard zones being reached by the upper and lower limbs</td>
</tr>
<tr>
<td>EN 1012-1:2010</td>
<td>Compressors and vacuum pumps - Safety requirements - Part 1 and Part 2</td>
</tr>
<tr>
<td>EN 2151:2008</td>
<td>Acoustics - Noise test code for compressors and vacuum pumps - Engineering method (grade 2)</td>
</tr>
<tr>
<td>EN 61000-6-2:2005</td>
<td>Electromagnetic compatibility (EMC) - Generic standards. Immunity for industrial environments</td>
</tr>
<tr>
<td>EN ISO 13449-1:2015 (1)</td>
<td>Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design</td>
</tr>
<tr>
<td>EN 13463-1:2009</td>
<td>Non-electrical equipment for potentially explosive atmospheres - Part 1: Basic methodology and requirements</td>
</tr>
<tr>
<td>EN 13463-5:2011</td>
<td>Non-electrical equipment for potentially explosive atmospheres - Part 5: Protection by constructional safety "c"</td>
</tr>
<tr>
<td>EN 13463-6:2005</td>
<td>Non-electrical equipment for potentially explosive atmospheres - Part 6: Protection by control of ignition source "b"</td>
</tr>
<tr>
<td>EN 1127-1:2011</td>
<td>Explosive atmospheres - Explosion prevention and protection - Part 1: Basic concepts and methodology</td>
</tr>
</tbody>
</table>

Person authorised to compile the technical file:

Gerd Rohweder
Busch Dienste GmbH
Schauinslandstr. 1
DE-79689 Maulburg

Chevenez, 22.10.2018

Christian Hoffmann, General director

(1) In case control systems are integrated.
Busch Vacuum Pumps and Systems
All over the World in Industry

Argentina
www.buschvacuum.com/ar
info@busch.com.ar

Australia
www.buschvacuum.com/au
sales@busch.com.au

Austria
www.buschvacuum.com/at
busch@busch.at

Bangladesh
www.buschvacuum.com/bd
sales@busch.com.bd

Belgium
www.buschvacuum.com/be
info@busch.be

Brazil
www.buschvacuum.com/br
vendas@buschdobrasil.com.br

Canada
www.buschvacuum.com/ca
info@busch.ca

Chile
www.buschvacuum.com/cl
info@busch.cl

China
www.buschvacuum.com/cn
info@busch-china.com

Colombia
www.buschvacuum.com/co
info@buschvacuum.co

Czech Republic
www.buschvacuum.com/cz
info@buschvacuum.cz

Denmark
www.buschvacuum.com/dk
info@busch.dk

Finland
www.buschvacuum.com/fi
info@busch.fi

France
www.buschvacuum.com/fr
busch@busch.fr

Germany
www.buschvacuum.com/de
info@busch.de

Hungary
www.buschvacuum.com/hu
busch@buschvacuum.hu

India
www.buschvacuum.com/in
sales@buschindia.com

Ireland
www.buschvacuum.com/ie
sales@busch.ie

Israel
www.buschvacuum.com/il
service_sales@busch.co.il

Italy
www.buschvacuum.com/it
info@busch.it

Japan
www.buschvacuum.com/jp
info@busch.jp

Korea
www.buschvacuum.com/kr
busch@busch.co.kr

Malaysia
www.busch.com.my
busch@busch.com.my

Mexico
www.buschvacuum.com/mx
info@busch.com.mx

Netherlands
www.buschvacuum.com/nl
info@busch.nl

New Zealand
www.buschvacuum.com/nz
sales@busch.co.nz

Norway
www.buschvacuum.com/no
post@busch.no

Peru
www.buschvacuum.com/pe
info@busch.com.pe

Poland
www.buschvacuum.com/pl
busch@busch.com.pl

Portugal
www.buschvacuum.com/pt
busch@busch.pt

Romania
www.buschvacuum.com/ro
office@buschromania.ro

Russia
www.buschvacuum.com/ru
info@busch.ru

Singapore
www.buschvacuum.com/sg
sales@busch.com.sg

South Africa
www.buschvacuum.com/za
info@busch.co.za

Spain
www.buschvacuum.com/es
contacto@buschiberica.es

Sweden
www.buschvacuum.com/se
info@busch.se

Switzerland
www.buschvacuum.com/ch
info@buschag.ch

Taiwan
www.buschvacuum.com/tw
service@busch.com.tw

Thailand
www.buschvacuum.com/th
info@busch.co.th

Turkey
www.buschvacuum.com/tr
vakutek@ttmail.com

United Arab Emirates
www.buschvacuum.com/ae
sales@busch.ae

United Kingdom
www.buschvacuum.com/uk
sales@busch.co.uk

USA
www.buschvacuum.com/us
info@buschusa.com

www.buschvacuum.com
0870201731/-0005_en / © Ateliers Busch S.A.