Installation and Operating Instructions

Vacuum Pumps
Dolphin LA 0053-1111 A, LB 0063-1011 A

Busch GVT Ltd.
Unit A
Westmere Drive
Crewe
CW1 6ZD England

0870150638 / 091222 / Original instructions / Modifications reserved
Preface

Congratulations on your purchase of the Busch vacuum pump. With watchful observation of the field’s requirements, innovation and steady development Busch delivers modern vacuum and pressure solutions worldwide.

These operating instructions contain information for
- product description,
- safety,
- transport,
- storage,
- installation and commissioning,
- maintenance,
- overhaul,
- troubleshooting and
- spare parts

of the vacuum pump.

The operating liquid supply system is either subject to a separate documentation or to be furnished by the operator.

For the purpose of these instructions, “handling” the vacuum pump means the transport, storage, installation, commissioning, influence on operating conditions, maintenance, troubleshooting and overhaul of the vacuum pump.

Prior to handling the vacuum pump these operating instructions shall be read and understood. If anything remains to be clarified please contact your Busch representative!

Keep these operating instructions and, if applicable, other pertinent operating instructions available on site.
Product Description

Use

The vacuum pump is intended for
– the suction
of
– non-explosive gases and vapours

The vacuum pump may only be used as contractually agreed with Busch. The conveyed medium, the operating liquid and the temperature ranges thereof may not be changed without written consent of Busch.

Maximum allowed temperatures:
- gas dry: 120 °C
- gas saturated: 100 °C
- operating liquid: 80 °C

The vacuum pump is intended for the placement in a non-potentially explosive environment.

The vacuum pump is thermally suitable for continuous operation (100 percent duty).

The vacuum pump is not ultimate pressure proof. Operation with a closed (“blanked”) suction line will damage the vacuum pump.

Principle of Operation

The vacuum pump works on the fluid ring principle.

At standstill, the pump housing (g) shall be filled with an operating liquid (usually water) to approx. the shaft centreline. On starting the vacuum pump, the impeller throws the liquid to the periphery of the housing, where it forms a liquid ring that rotates in the pump housing. This liquid ring seals the space between the impeller (h) and the housing (g). In the 12 o’clock position the liquid ring touches the hub of the impeller (h). As the impeller rotates counterclockwise (view from non-drive end), the liquid ring moves away from the hub, making space for gas to be drawn in through the intake port (e) (approx. from the 11 o’clock to the 8 o’clock position). The chamber surrounded by the hub, the liquid ring and two adjacent impeller blades achieves its maximum volume in the 6 o’clock position. As the impeller continues to rotate, the liquid ring moves closer to the impeller hub, the volume of the chamber decreases and the enclosed gas is expelled through the discharge port (f) (approx. from the 3 o’clock position to the 12 o’clock position). This sequence is repeated for every chamber between two impeller blades with each revolution.

The operating liquid also absorbs the heat of compression and condensation (when conveying saturated media).

The control of the level and the temperature of the operating liquid are essential for the satisfactory operation of the vacuum pump. The chapter Installation Prerequisites (→ page 5) gives advice and explains typical installation options.

2 stages, both working on the principle described above, are installed in line in order to achieve a better ultimate/differential pressure.

Cooling

The vacuum pump is cooled by
- the air flow from the fan wheel of the drive motor
the process gas
the operating liquid

Start Controls
The vacuum pump comes without start controls. The control of the vacuum pump is to be provided in the course of installation.

Safety

Intended Use
Definition: For the purpose of these instructions, “handling” the vacuum pump means the transport, storage, installation, commissioning, influence on operating conditions, maintenance, troubleshooting and overhaul of the vacuum pump.

The vacuum pump is intended for industrial use. It shall be handled only by qualified personnel.

The allowed media and operational limits (page 3: Product Description) and the installation prerequisites (page 5: Installation Prerequisites) of the vacuum pump shall be observed both by the manufacturer of the machinery into which the vacuum pump is to be incorporated and by the operator.

The maintenance instructions shall be observed.

Prior to handling the vacuum pump these installation and operating instructions shall be read and understood. If anything remains to be clarified please contact your Busch representative!

Safety Notes
The vacuum pump has been designed and manufactured according to state-of-the-art methods. Nevertheless, residual risks may remain. These operating instructions highlight potential hazards where appropriate. Safety notes are tagged with one of the keywords DANGER, WARNING and CAUTION as follows:

DANGER
Disregard of this safety note will always lead to accidents with fatal or serious injuries.

WARNING
Disregard of this safety note may lead to accidents with fatal or serious injuries.

CAUTION
Disregard of this safety note may lead to accidents with minor injuries or property damage.

Noise Emission
For the sound pressure level in free field according to EN ISO 2151 page 25: Technical Data.

Transport

Transport in Packaging
Packed on a pallet the vacuum pump is to be transported with a forklift.

Transport without Packaging
In case the vacuum pump is packed in a cardboard box with inflated cushions:

- Remove the inflated cushions from the box

In case the vacuum pump is in a cardboard box cushioned with rolled corrugated cardboard:

- Remove the corrugated cardboard from the box

In case the vacuum pump is laid in foam:

- Remove the foam

In case the vacuum pump is bolted to a pallet or a base plate:

- Remove the bolting between the vacuum pump and the pallet/base plate

In case the vacuum pump is fastened to the pallet by means of tightening straps:

- Remove the tightening straps

CAUTION
Do not walk, stand or work under suspended loads.

- Attach lifting gear as shown in the illustration

- Attach the lifting gear to a crane hook with safety latch

- Lift the vacuum pump with a crane

In case the vacuum pump was bolted to a pallet or a base plate:

- Remove the stud bolts from the rubber feet

Storage

Short-term Storage

- Make sure that the suction connection and the gas discharge are closed (leave the provided plugs in)

- Store the vacuum pump
 - if possible in original packaging,
 - indoors,
 - dry,
 - dust free and
 - vibration free

Conservation

In case of adverse ambient conditions (e.g. aggressive atmosphere, frequent temperature changes) conserve the vacuum pump immediately. In case of favourable ambient conditions conserve the vacuum pump if a storage of more than 3 months is scheduled.

- Make sure that all ports are firmly closed; seal all ports that are not sealed with PTFE-tape, gaskets or o-rings with adhesive tape

Note: VCI stands for “volatile corrosion inhibitor”. VCI-products (film, paper, cardboard, foam) evaporate a substance that condenses in molecular thickness on the packed good and by its electro-chemical properties effectively suppresses corrosion on metallic surfaces. However, VCI-products may attack the surfaces of plastics and elastomers. Seek advice from your local packaging dealer! Busch uses CORTEC VCI 126 R film for the overseas packaging of large equipment.

- Wrap the vacuum pump in VCI film

- Store the vacuum pump
 - if possible in original packing,
 - indoors,
of bubbles deteriorates the pump performance. Cavitation is a phenomenon which can destroy the vacuum pump rapidly. Also the formation of bubbles that have been located on surfaces the operating liquid cannot reach anymore occurs. At very low pressures and sufficiently high temperatures the operating media depend on the physical conditions pressure and temperature. Actually the condition of both the operating liquid and the conveyed process gas in the operating liquid, hence increasing the risk of cavitation. If the primary task is to suck vapours, a non-condensing gas should be selected for the admixing.

For a trouble-free operation the vacuum pump shall be filled with operating liquid automatically. For commissioning after conservation:

- Make sure that all remains of adhesive tape are removed from the ports
- Commission the vacuum pump as described in the chapter Installation and Commissioning (page 5)

Installation and Commissioning

Installation Prerequisites

CAUTION

In case of non-compliance with the installation prerequisites, particularly in case of insufficient cooling:

- Risk of damage or destruction of the vacuum pump and adjoining plant components!
- Risk of injury!

The installation prerequisites must be complied with.

- Make sure that the integration of the vacuum pump is carried out such that the essential safety requirements of the Machine Directive 2006/42/EC are complied with (in the responsibility of the designer of the machinery into which the vacuum pump is to be incorporated; page 16: note in the EC-Declaration of Conformity)

Ancillary Conditions

The chapter Principle of Operation (page 3) describes the basic function of a vacuum pump. This description assumes, that the liquid ring stays liquid all the time.

Actually the condition of both the operating liquid and the conveyed process gas in the operating liquid, hence increasing the risk of cavitation. If the primary task is to suck vapours, a non-condensing gas should be selected for the admixing.

At very low pressures and sufficiently high temperatures the operating liquid can locally transfer into the vapour phase, creating bubbles. In case of bubbles that have been located on surfaces the operating liquid cannot reach anymore occurs. At very low pressures and sufficiently high temperatures the operating media depend on the physical conditions pressure and temperature. Actually the condition of both the operating liquid and the conveyed process gas in the operating liquid, hence increasing the risk of cavitation. If the primary task is to suck vapours, a non-condensing gas should be selected for the admixing.

The chapters Principle of Operation (page 3) describes the basic function of a vacuum pump. This description assumes, that the liquid ring stays liquid all the time.

For a trouble-free operation the vacuum pump shall be filled with operating liquid approx. up to the shaft centre before the pump is switched on. A low liquid level deteriorates the pump performance. A dry start causes failure of the mechanical seal on the shaft of the vacuum pump. A start with a completely flooded housing damages the blades of the impeller.

Once the vacuum pump is running operating liquid can be supplied. Excess operating liquid will then be thrown out through the outlet. The pressure of the supplied operating liquid shall not exceed the outlet pressure of the vacuum pump by more than 0.1 bar, otherwise the pump performance will deteriorate. The best solution is a reservoir under atmospheric pressure from which the vacuum pump sucks in operating liquid automatically.

The pressure control and the operating liquid supply system of a vacuum pump must therefore fulfill the following tasks:

- control the level in the operating liquid separator and if appropriate, cool the operating liquid to a temperature at which no cavitation will occur

Operating the vacuum pump close to its ultimate pressure requires large quantities of cool operating liquid. In order to avoid cavitation it is usually more prudent to limit the minimum working pressure.

The pressure on the suction side of the vacuum pump must not fall below the minimum allowed operating pressure. Therefore it is not allowed to use a pressure control actuator of which would throttle or even close the suction line.

The most effective measure to limit the inlet pressure is the use of a vacuum relief valve.

The vacuum relief valve can either be installed in the suction line or on the housing of the vacuum pump. The gas supply line of the vacuum relief valve is usually connected to the liquid separator. Alternatively ambient air can be used to limit the vacuum.

Feeding ambient air cools, acts against condensation or solution of process gas in the operating liquid and therefore reduces the risk of cavitation, however, it mixes the process gas with ambient air, i.e. with oxygen, which is possibly not desired. Drawing air from the liquid separator avoids mixing with ambient air, however, this air is usually warmer, promotes the accumulation of condensed or solved process gas in the operating liquid, hence increasing the risk of cavitation. If the primary task is to suck vapours, a non-condensing gas should be selected for the admixing.

Layout Proposals

The working principle of the liquid ring is dependent upon a continuous supply of clean operating liquid, which is normally water. The operating liquid enters the Vacuum pump/ Compressor/ Vacuum and pressure pump/ Blower through a connection B on the housing and is discharged from the Vacuum pump/ Compressor/ Vacuum and pressure pump/ Blower along with the process gas.

For the layout of an operating fluid supply system there are basically three different models:

- Once through cooling / no recovery
- partial recovery
- closed loop / total recovery

All of these arrangements have four basic elements:

- Source of the operating liquid (from the water main or reservoir)
- Regulating device to control flow of liquid
- Means of stopping the flow when the Vacuum pump/ Compressor/ Vacuum and pressure pump/ Blower is shut off (manual or with solenoid valve)
- Means of separating the gas-liquid exhaust mixture

Legend:

- Discharge liquid
- Operating liquid
- Fresh liquid
- Cooling liquid
- Circulation liquid
- Liquid level
- Process suction side
- Process pressure side
- Liquid ring-vacuum pump
- Circulating pump
- Liquid separator
- Fresh liquid vessel
- Aeration connection
- Heat transmitter
- Vacuum relief valve
- Shut-off valve
- Shut-off valve

For commissioning after conservation:

- Make sure that all remains of adhesive tape are removed from the ports
- Commission the vacuum pump as described in the chapter Installation and Commissioning (page 5)
Once Through Operation / No Recovery

The operating liquid is taken directly from a main supply to the vacuum pump. The operating liquid is separated from the gas and wasted to a drain. No recirculation or recovery takes place. This arrangement can be used where operating liquid conservation or contamination are not a concern. An automatic solenoid valve can provide for flow of operating liquid simultaneously with vacuum pump operation (i.e. upon motor stopping, the valve closes preventing the housing to be filled with too much operating liquid). With a manual operating liquid shut off valve, it is important to open valve immediately after starting the motor and to close the valve immediately before switching the motor off.

Version with lateral liquid separator:

Partial Recovery

The operating liquid enters and leaves the vacuum pump in the same manner as with the once through arrangement. A portion of the operating liquid is recirculated from the separator tank to the vacuum pump. The remainder is discharged from the separator and wasted to the drain. The fresh liquid F is introduced in sufficient quantity to maintain proper temperature essential for good vacuum pump performance. This type of arrangement is used where seal liquid conservation is possible, and, if other than water is utilised, the consumption can be reduced by up to 50 percent depending upon the fluid vapour pressure and temperature.

The operating liquid level in the separator/recirculation tank should be at, or slightly below, the centreline of the pump shaft. Provisions may also be made for high level overflow. This will help prevent starting the vacuum pump with the housing full of water, which could overload the vacuum pump and the drive motor.

Version with lateral liquid separator:
Circuit diagram:

Alternative thermostatically controlled operating liquid temperature:

Closed Circuit Cooling / Total Recovery

This arrangement provides for total recirculation of the operating liquid. A heat exchanger is added to remove the heat of compression, friction and condensation from the operating liquid before it is re-introduced back into the vacuum pump. For prolonged operation at suction pressure above 300 hPa abs (300 mbar abs) a circulating pump is normally installed and mandatory at suction pressure above 400 hPa abs (400 mbar abs) or when suction pressure varies during cycling operations.

The operating liquid level in the separator/recirculation tank should be at, or slightly below, the centreline of the pump shaft. Provisions may also be made for high level overflow and low level make-up. This will help prevent starting the vacuum pump with the housing full of water, which could overload the vacuum pump and the drive motor.

The heat exchanger W must be capable of removing approx. 85 percent of the drive power and possibly appearing condensation heat.

Mounting Position and Space

- Make sure that the following ambient conditions will be complied with:
 - ambient temperature: 5 ... 40 °C
 - ambient pressure: atmospheric
- Make sure that the environmental conditions comply with the protection class of the drive motor (according to the nameplate)
- Make sure that the vacuum pump will be placed or mounted horizontally
- Make sure that the base for placement / mounting base is even
- Make sure that in order to warrant a sufficient cooling there will be a clearance of minimum 0.1 m between the vacuum pump and nearby walls
- Make sure that no heat sensitive parts (plastics, wood, cardboard, paper, electronics) will touch the surface of the vacuum pump
- Make sure that the installation space or location is vented such that a sufficient cooling of the vacuum pump is warranted.

CAUTION
During operation the surface of the vacuum pump may reach temperatures of more than 70 °C.
Risk of burns!

- Make sure that the vacuum pump will not be touched inadvertently during operation, provide a guard if appropriate.

Suction Connection

CAUTION
Intruding foreign objects or liquids can destroy the vacuum pump.

In case the inlet gas can contain dust or other foreign solid particles:
- Make sure that the suction line fits to the suction connection (a) of the vacuum pump
- Make sure that the line size of the suction line over the entire length is at least as large as the suction connection (a) of the vacuum pump

In case the length of the suction line exceeds 2 m it is prudent to use larger line sizes in order to avoid a loss of efficiency and an overload of the vacuum pump. Seek advice from your Busch representative!

In case the vacuum shall be maintained after shutdown of the vacuum pump:
- Provide a manual or automatic operated valve (= non-return valve) in the suction line
- Make sure that the suction line does not contain foreign objects, e.g. welding scales

Gas Discharge

Version with top liquid separator:
The discharge piping should not exceed an elevation more than 600 mm above the discharge flange (c) of the pump housing until the liquid is separated. Too high an elevation will cause back pressure and possible drive motor overload.

The discharged gas must flow without obstruction. It is not permitted to shut off or throttle the discharge line or to use it as a pressurised air source.
- Make sure that the discharge line fits to the gas discharge (c) of the vacuum pump
- Make sure that the line size of the discharge line over the entire length is at least as large as the gas discharge (c) of the vacuum pump

In case the length of the discharge line exceeds 2 m it is prudent to use larger line sizes in order to avoid a loss of efficiency and an overload of the vacuum pump. Seek advice from your Busch representative!

- Make sure that the discharge line either slopes away from the vacuum pump or provide a liquid separator or a drip leg with a drain cock, so that no liquids can back up into the vacuum pump

Electrical Connection / Controls

- Make sure that the stipulations acc. to the EMC-Directive 2004/108/EC and Low-Voltage-Directive 2006/95/EC as well as the EN-standards, electrical and occupational safety directives and the local or national regulations, respectively, are complied with (this is the responsibility of the designer of the machinery into which the vacuum pump is to be incorporated; ➔ page 16: note in the EC-Declaration of Conformity).
- Make sure that the power supply for the drive motor is compatible with the data on the nameplate of the drive motor
- Make sure that an overload protection according to EN 60204-1 is provided for the drive motor

- Make sure that the drive of the vacuum pump will not be affected by electric or electromagnetic disturbance from the mains; if necessary seek advice from the Busch service

In case of mobile installation:
- Provide the electrical connection with grommets that serve as strain-relief

Installation

Mounting

- Make sure that the Installation Prerequisites (➔ page 5) are complied with
- Set down or mount the vacuum pump at its location
- Make sure that the base plate is not bent and that the flexible coupling is properly aligned

Note: A misaligned coupling leads to increased loads onto the coupling and the bearings and hence to premature failure of the vacuum pump.

Mounting the V-belt Drive

- Mount the v-belt drive

Checking the Alignment of the Pulleys

- Make sure that the v-belt drive is properly aligned:

Proper alignment: both pulleys / pulley packages in one plane

Improper alignment: axial offset

Improper alignment: pulleys / pulley packages angled

- Adjust the v-belt tension after the installation of the operating liquid supply system (the vacuum pump shall not run dry)
Connecting Electrically

WARNING
Risk of electrical shock, risk of damage to equipment.

Electrical installation work must only be executed by qualified personnel that knows and observes the following regulations: - IEC 364 or CENELEC HD 384 or DIN VDE 0100, respectively, - IEC-Report 664 or DIN VDE 0110, - BGV A2 (VGB 4) or corresponding national accident prevention regulation.

- Electrically connect the drive motor
- Connect the protective earth conductor
- Determine the intended direction of rotation with the arrow (stuck on or cast)

Version with mechanical seal:
- Make sure that the pump housing (g) is filled with an operating liquid (usually water) to approx. the shaft centreline (a mechanical seal shall not run dry)
- "Bump" the drive motor
- Watch the fan wheel of the drive motor and determine the direction of rotation just before the fan wheel stops

If the rotation must be changed:
- Switch any two of the drive motor wires
- Connect the switches for - level monitoring - temperature - pressure (according to the diagram) to the system control

Connecting Lines/Pipes
- Connect the suction line
- Connect the discharge line

Installation without discharge line:
- Make sure that the gas discharge (c) is open
- Make sure that all provided covers, guards, hoods etc. are mounted
- Make sure that cooling air inlets and outlets are not covered or obstructed and that the cooling air flow is not affected adversely in any other way

Filling in Operating Liquid
The handling of the operating liquid supply system is not subject to these operating instructions (separate documentation or furnished by the operator).

Adjusting the V-belt Tension
- Make sure that all belts are in their grooves
- Tension the belt drive to take up all the slack until the belts are fairly taut
- Start the drive
- Continue to adjust until the belts have only a slight bow on the slack side while operating under load conditions

After several days of operation:
- Check the tension again

Insufficient tension is often evidenced by slipping (squealing) at start-up

Recording of Operational Parameters
As soon as the vacuum pump is operated under normal operating conditions:
- Measure the drive motor current and record it as reference for future maintenance and troubleshooting work

Operation Notes
Use
The vacuum pump is intended for
- the suction of non-explosive gases and vapours

The vacuum pump may only be used as contractually agreed with Busch. The conveyed medium, the operating liquid and the temperature ranges thereof may not be changed without written consent of Busch.

Maximum allowed temperatures:
- gas dry: 120 °C
- gas saturated: 100 °C
- operating liquid: 80 °C

The vacuum pump is intended for the placement in a non-potentially explosive environment.

The vacuum pump is thermally suitable for continuous operation (100 percent duty).

The vacuum pump is not ultimate pressure proof. Operation with a closed ("blanked") suction line will damage the vacuum pump.

CAUTION
During operation the surface of the vacuum pump may reach temperatures of more than 70 °C.

Risk of burns!

The vacuum pump shall be protected against contact during operation, it shall cool down prior to a required contact or heat protection gloves shall be worn.

- Make sure that all provided covers, guards, hoods etc. remain mounted
- Make sure that protective devices will not be disabled
- Make sure that cooling air inlets and outlets will not be covered or obstructed and that the cooling air flow will not be affected adversely in any other way
- Make sure that the installation prerequisites (page 5: Installation Prerequisites) are complied with and will remain complied with, particularly that a sufficient cooling will be ensured

CAUTION
The shaft of the vacuum pump is sealed by means of a mechanical seal (433.0).

Starting the vacuum pump without operating liquid will result in mechanical seal failure.

Never start the vacuum pump without operating liquid.
Setting Operating Conditions
Selection of Operating Liquid

Water is usually used as operating liquid for the conveyance of air and other inert gases. Other ring liquids may be used in order to comply with the selected gases and separation methods.

The kinematic viscosity at operating temperature shall not exceed 2 mm²/s. Higher viscosities require increased drive power. The vapour pressure of the ring fluid in case of vacuum operation shall not exceed 16 mbar. Higher vapour pressures deteriorate the suction capacity and the ultimate pressure as stated in the performance tables or curves resp. In case of use of ring liquids other than water confirmation of the vacuum pump’s conveying characteristics shall be sought from Busch.

If liquids get conveyed together with the process gas (three to five times the quantity of the circulating liquid rate as given in the datasheet) the addition of fresh liquid can be reduced significantly.

Condensation of vapour inside the vacuum pump can cause cavitation and destroy components of the vacuum pump. Condensation upstream of the vacuum pump (jet or surface condenser) shall therefore be preferred. Under certain conditions the accumulating condensate can be conveyed along by the vacuum pump. Otherwise a separate liquid pump must be provided for. The design shall be performed by the manufacturer/supplier.

The suction capacity (or volume flow) as given in the performance table is achieved at an operating water temperature of 15 °C. Operation at higher water temperatures leads to a reduced suction capacity (or volume flow), but leaves the option to save fresh water or cooling liquid in case of open or closed circuit cooling. This liquid rate shall be set by means of the regulating valve or, only to such a quantity, that the required suction capacity (or volume flow) is achieved. The regulating valve shall be locked in this position.

Fresh Water Requirement

Fresh water flow rate requirements are shown in the technical data section page 25. The data given applies to once through operation. These water flow rates result in approximately a 5.5 °C rise in temperature for a single stage vacuum pump, and a 2.7 °C rise for a two stage vacuum pump.

These water flow rates result in approximately a 5.5 °C rise in temperature for a single stage vacuum pump, and a 2.7 °C rise for a two stage vacuum pump when handling dry air. Condensable vapours in the gas stream, however, will add to the heat load and cause a higher temperature rise through the vacuum pump.

Partial recovery flow rates may be reduced by up to 50 percent due to temperature rise through the vacuum pump. Condensate in the gas stream further adds to the heat load.

Water flow rates result in approximately a 5.5 °C rise in temperature for a single stage vacuum pump, and a 2.7 °C rise for a two stage vacuum pump.

The vapour pressure of the operating liquid and consequently the ultimate pressure as stated in the performance tables or curves resp. in case of use of ring liquids other than water shall be stated from Busch. The pressure control in the vacuum system must by no means be achieved by throttling or even closing of the suction line!

The vapour pressure of the operating liquid and consequently the ultimate pressure can be reduced by cooling. However, this increases the cooling water flow considerably. In most cases the low ultimate pressure is not required and cavitation shall be avoided by means of vacuum limit rather than cooling.

Removing Contaminations and Deposits

- In closed operating liquid circuits with water use softened water
- Make sure that no dirt particles with a diameter larger than 0.1 mm will intrude the vacuum pump, neither via the process gas nor via the operating liquid. Filter out larger dirt particles before the vacuum pump.

The dirt concentration shall not exceed 5 volume percent.

Maintenance

In case the vacuum pump conveyed gas that was contaminated with foreign materials which are dangerous to health, harmful material can reside in filters.

Danger to health during inspection, cleaning or replacement of filters.

Personal protective equipment must be worn during the handling of contaminated filters.

Contaminated filters are special waste and must be disposed of separately in compliance with applicable regulations.

During operation the surface of the vacuum pump may reach temperatures of more than 70 °C.

Risk of burns!

Prior to disconnecting connections make sure that the connected pipes/lines are vented to atmospheric pressure.

Maintenance Schedule

Monthly:

- Check for audible abnormal noise, e.g.:
 - Excessive rumble (possible cavitation problem)
 - Periodic click/knock (possible mechanical contact / bearing degradation)

Version with mechanical seals:

- Mechanical seal squealing noise (possible lack of lubrication)
- Check for excessive vibration

Vibration should be less than 5.5 mm/s RMS when measured in the axial, vertical radial and vertical horizontal planes on the bearing housing.

High vibration could indicate a coupling misalignment, fixing bolt looseness or bearing degradation.

- Check the operating liquid temperature
 (with a hand held probe or a permanent gauge, if fitted; consult the manual)
Check the bearing temperature
(with a hand held probe or a permanent gauge, if fitted; at 25 °C ambient temperature the bearing temperature should not exceed 60 °C (operating liquid = water) or 80 °C (operating liquid = oil); for other ambient temperatures adjust accordingly)

Check that the vacuum pump achieves the usual/specifed vacuum level

Check all pipe work for leakage

Version with mechanical seals:

Check the mechanical seals for leakage

Make sure that the vacuum pump is shut down and locked against inadvertent start up

In case of operation in a dusty environment:

Clean as described under page 11: Every 6 Months:

Every 4 Months or 3000 Operating Hours:

Larger units (size 6 and above):

Regrease the bearings (lithium based grease NLGI class 2)

Smaller units up to and including size 5 are greased for life

Every 6 Months:

Make sure that the housing is free from dust and dirt, clean if necessary

Make sure that the vacuum pump is shut down and locked against inadvertent start up

Clean the fan cowling, the fan wheel, the ventilation grille and the cooling fins

Every Year:

Make sure that the vacuum pump is shut down and locked against inadvertent start up

In case an inlet screen is installed:

Check the inlet screen, clean if necessary

Every Year:

Make sure that the vacuum pump is shut down and locked against inadvertent start up

Clean as described under page 11: Every 6 Months:

Every 6 Months:

Mark the castings to ensure the correct reassembly and alignment

Remove the manifold or crossover part (147.1, as applicable)

Remove the bearing caps (360.0, 360.1)

Size 9 to 11:

Slacken the locknuts (923.)

Slacken the inner bearing caps (360.2, 360.3) and slide back

Sizes 3 to 8, series 1:

Remove the drive end bearing housing (350) using bearing pullers

Sizes 3 to 8, series 2:

Remove the drive end bearing housing (357) using two jacking screws

Size 9, 10, 11:

Remove the drive end bearing housing (350) using bearing pullers

Remove the drive end bearing using pullers

Version with mechanical seal:

Remove the drive end mechanical seal (433)

Version with gland packing:

Remove the drive end gland follower (452)

Size 9, 10, 11 only:

Refit the drive end bearing housing with a dummy bearing to support the shaft

Stand the vacuum pump up in vertical position with the drive end pointing down

Sizes 3 to 8, series 1:

Remove the non drive end bearing housing (350) using bearing pullers

Sizes 3 to 8, series 2:

Remove the non drive end bearing housing (357) using two jacking screws

Size 9, 10, 11:

Remove the non drive end bearing housing (350) using bearing puller

Remove the non drive end bearing using pullers

Version with mechanical seal:

Remove the non drive end mechanical seal (433)

Version with gland packing:

Remove the non drive end gland follower (452)

Remove the tie rods (905)

Remove the non drive end casing (107) complete with the side plate (137.4) and the valve (741, if fitted)

Remove the impeller casing (110.1)

Remove the shaft assembly complete with the parts 210, 137.3, 137.2, 230, 521 and 921 (as applicable)

Secure the impeller assembly and remove the locknut (922) using a C-spanner

Remove the impeller(s) and inter plates (two stage only) from the shaft

Reassembly

The vacuum pump is built up in reversal of the dismantling instructions.

Clean all parts thoroughly before commencing rebuild
To be checked during assembly:

- The impellers must be placed on the shaft with the blades leaning in the direction of rotation (clockwise as viewed from the drive end - except size 3 is anticlockwise).

- The clearance between the impellers and the side plates is set at manufacture. If new parts are fitted the abutment ring may need to be re-machined or shimmed for pump sizes 3 to 8 (shim packs are available from Busch). For size 9 to 11 pumps, the impeller to side plate clearance is set by using bearing caps at the non drive end.

- The clearance between the inter plate and the 1st and 2nd stage impellers must be checked when the rotating assembly is built up as shown below.

- Standard construction (cast iron): the impellers and impeller casings are machined so as to give the desired clearance ‘C’. Liquid gasket is used to seal the components and so does not affect the clearance.

- Stainless steel and bronze construction: the impellers and impeller casings are machined the same width as each other. Gaskets are used to create the required clearance.

Clearances:

The impeller spacer (521, two stage only) should be either machined or shimmed to give a clearance ‘C’. For size 9 pumps the clearance can be centralised at the non drive end by adjusting the bearing end caps (360.1, 360.3)

<table>
<thead>
<tr>
<th>Pump size</th>
<th>Cast iron</th>
<th>Bronze, 316ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.10 ... 0.15 mm (0.004" ... 0.006")</td>
<td>0.15 ... 0.23 mm (0.006" ... 0.009")</td>
</tr>
<tr>
<td>4</td>
<td>0.10 ... 0.15 mm (0.004" ... 0.006")</td>
<td>0.15 ... 0.23 mm (0.006" ... 0.009")</td>
</tr>
<tr>
<td>5</td>
<td>0.15 ... 0.20 mm (0.006" ... 0.008")</td>
<td>0.23 ... 0.30 mm (0.009" ... 0.012")</td>
</tr>
<tr>
<td>6</td>
<td>0.20 ... 0.25 mm (0.008" ... 0.010")</td>
<td>0.30 ... 0.38 mm (0.012" ... 0.015")</td>
</tr>
<tr>
<td>7</td>
<td>0.25 ... 0.35 mm (0.010" ... 0.014")</td>
<td>0.35 ... 0.45 mm (0.014" ... 0.018")</td>
</tr>
<tr>
<td>8</td>
<td>0.30 ... 0.40 mm (0.012" ... 0.016")</td>
<td>0.40 ... 0.50 mm (0.016" ... 0.020")</td>
</tr>
<tr>
<td>9</td>
<td>0.30 ... 0.40 mm (0.012" ... 0.016")</td>
<td>0.40 ... 0.50 mm (0.016" ... 0.020")</td>
</tr>
<tr>
<td>10, 11</td>
<td>0.35 ... 0.45 mm (0.014" ... 0.018")</td>
<td>0.45 ... 0.55 mm (0.018" ... 0.021")</td>
</tr>
</tbody>
</table>

Fitting of the Abutment Ring (Sizes 3 to 8 Only)

This operation should be carried out when the pump is built up except for the ball bearings, mechanical seals and bearing caps. The abutment ring enables the impellers to be spaced equally from the plates. The distance from the shoulder on the shaft to the bearing location in the housing has to be found. This is done with the use of a depth gauge as shown below.

The abutment width is determined as the mean value of ‘A’ when the shaft is moved in both directions less ‘B’. Use a dummy bearing to slide the shaft backward and forward. Once the abutment has been determined the bearing seal housing can be removed and the mechanical seals fitted (series 2 only).

Overhaul

Busch service will only accept vacuum pumps that come with a completely filled in and legally binding signed “Declaration of Contamination” (form downloadable from www.busch-vacuum.com).

Removal from Service

Temporary Removal from Service

- Prior to disconnecting pipes/lines make sure that all pipes/lines are vented to atmospheric pressure.

In case water is being used as operating fluid and the ambient temperatures can fall below 0 °C or the vacuum pump is scheduled to be shut down for more than 12 weeks:

 - Drain the water.

In case water is being used as operating fluid, the ambient temperatures can fall below 0 °C and the water is not meant to be drained:

 - Make sure the water sufficiently provided with antifreeze.

Recommissioning

- Observe the chapter Installation and Commissioning (page 5).

Dismantling and Disposal

- Make sure that materials and components to be treated as special waste have been separated from the vacuum pump.

- Make sure that the vacuum pump is not contaminated with harmful foreign material.

According to the best knowledge at the time of printing of this manual the materials used for the manufacture of the vacuum pump involve no risk.

- Dispose of the vacuum pump as scrap metal.

Spare Parts

When ordering spare parts from Busch please quote the following:

- Pump type / model number
- Pump serial number
- Pump ID number
- Part number
- Description of part
Troubleshooting

WARNING
Risk of electrical shock, risk of damage to equipment.

Electrical installation work must only be executed by qualified personnel that knows and observes the following regulations:
- IEC 364 or CENELEC HD 384 or DIN VDE 0100, respectively,
- IEC-Report 664 or DIN VDE 0110,
- BGV A2 (VBG 4) or equivalent national accident prevention regulation.

CAUTION
During operation the surface of the vacuum pump may reach temperatures of more than 70 °C.
Risk of burns!

Let the vacuum pump cool down prior to a required contact or wear heat protection gloves.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The vacuum pump does not reach the usual</td>
<td>The vacuum system or suction line is not leak-tight</td>
<td>Check the hose or pipe connections for possible leak</td>
</tr>
<tr>
<td>pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The drive motor draws a too high current</td>
<td>The operating liquid is too warm (the characteristic curves are based on 15 °C warm water as operating liquid, with higher temperatures the achieved pressure and the flow rate deteriorate)</td>
<td>Reduce the temperature of the operating liquid</td>
</tr>
<tr>
<td>(compare with initial value after commission-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ing)</td>
<td>The mechanical seal (433.0) leaks</td>
<td>Replace the mechanical seal (433.0)</td>
</tr>
<tr>
<td>Evacuation of the system takes too long</td>
<td>Gas or liquid channels are blocked</td>
<td>Dismantle and clean the vacuum pump</td>
</tr>
<tr>
<td></td>
<td>In case a screen is installed in the suction connection (a):</td>
<td>Clean the screen</td>
</tr>
<tr>
<td></td>
<td>The screen in the suction connection (a) is partially clogged</td>
<td>If cleaning is required too frequently install a filter upstream</td>
</tr>
<tr>
<td></td>
<td>The filter on the suction connection (a) is partially clogged</td>
<td>Clean or replace the inlet air filter, respectively</td>
</tr>
<tr>
<td></td>
<td>Partial clogging in the suction, discharge or pressure line</td>
<td>Remove the clogging</td>
</tr>
<tr>
<td></td>
<td>Long suction, discharge or pressure line with too small diameter</td>
<td>Use larger diameter</td>
</tr>
<tr>
<td></td>
<td>Internal parts are worn or damaged</td>
<td>Repair the vacuum pump (Busch service)</td>
</tr>
<tr>
<td>The gas conveyed by the vacuum pump smells</td>
<td>Process components evaporating under vacuum</td>
<td>Check the process, if applicable</td>
</tr>
<tr>
<td>displeasing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The vacuum pump does not start</td>
<td>The drive motor is not supplied with the correct voltage or is overloaded</td>
<td>Supply the drive motor with the correct voltage</td>
</tr>
<tr>
<td></td>
<td>The drive motor starter overload protection is too small or trip level is too low</td>
<td>Compare the trip level of the drive motor starter overload protection with the data on the nameplate, correct if necessary</td>
</tr>
<tr>
<td></td>
<td>One of the fuses has blown</td>
<td>Check the fuses</td>
</tr>
<tr>
<td></td>
<td>The connection cable is too small or too long causing a voltage drop at the vacuum pump</td>
<td>Use sufficiently dimensioned cable</td>
</tr>
<tr>
<td>Issue</td>
<td>Solution</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| The vacuum pump or the drive motor is blocked | Make sure the drive motor is disconnected from the power supply
Try to turn the drive motor with the vacuum pump by hand
If the vacuum pump is blocked: Repair the vacuum pump (Busch service) |
| The drive motor is defective | Replace the drive motor (Busch service) |
| The vacuum pump is blocked | Solid foreign matter has entered the vacuum pump
Corrosion in the vacuum pump from remaining condensate
Corrosion between the rotor (h) and the housing (g)
Ice in the vacuum pump
The operating liquid is congealed
The vacuum pump was run in the wrong direction
Repair the vacuum pump (Busch service)
Check the process
Eliminate by use of anti-rust liquid
Carefully warm up the vacuum pump
Defrost the operating liquid
Repair the vacuum pump (Busch service)
When connecting the vacuum pump make sure the vacuum pump will run in the correct direction (page 8: Installation) |
| The drive motor is running, but the vacuum pump stands still | The coupling between the drive motor and the vacuum pump is defective
Loose connection(s) in the drive motor terminal box
Not all drive motor coils are properly connected
The drive motor operates on two phases only
Check the proper connection of the wires against the connection diagram
Tighten or replace loose connections
Adjust the regulating valves
The performance data is based on water (1000 kg/m³, 1 mm²/s), higher density or viscosity require higher shaft power
Provide a different operating liquid or a stronger drive motor
Disassemble the vacuum pump, clean it and adjust to proper clearances
Verification and rectification page 5: Installation and Commissioning |
| The vacuum pump starts, but labours or runs noisily or rattles
The drive motor draws a too high current (compare with initial value after commissioning) | The operating liquid level is too high
Density or viscosity of the operating liquid too high
Friction between the rotor and the front of the housing
The vacuum pump runs in the wrong direction
Foreign objects in the vacuum pump
Stuck bearings
Defective bearings
The vacuum pump cavitates (periodic formation and collapsing of steam bubbles in the operating liquid; page 5: Installation and Commissioning)
Worn coupling element | Replace the coupling element
Check the proper connection of the wires against the connection diagram
Tighten or replace loose connections
Check the operating liquid level
Increase the working pressure (vacuum relief valve) or decrease the temperature of the operating liquid
In case of suction of condensable vapours: make sure that enough non condensable gas is conveyed along
CAUTION: continuous operation under cavitation will destroy the vacuum pump
Repair the vacuum pump (Busch service)
Replace the coupling element |
<table>
<thead>
<tr>
<th>Issue</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient air ventilation</td>
<td>Make sure that the cooling of the vacuum pump is not impeded by dust/dirt. Clean the fan cowling, the fan wheel, the ventilation grille and the cooling fins. Install the vacuum pump in a narrow space only if sufficient ventilation is ensured.</td>
</tr>
<tr>
<td>Ambient temperature too high</td>
<td>Observe the permitted ambient temperatures.</td>
</tr>
<tr>
<td>Temperature of the inlet gas too high</td>
<td>Observe the permitted temperatures for the inlet gas.</td>
</tr>
<tr>
<td>Insufficient gas transfer</td>
<td></td>
</tr>
<tr>
<td>Mains frequency or voltage outside tolerance range</td>
<td>Provide a more stable power supply.</td>
</tr>
<tr>
<td>Partial clogging of filters or screens</td>
<td></td>
</tr>
<tr>
<td>Partial clogging in the suction, discharge or pressure line</td>
<td>Remove the clogging.</td>
</tr>
<tr>
<td>Long suction, discharge or pressure line with too small diameter</td>
<td>Use larger diameter.</td>
</tr>
</tbody>
</table>
EU Declaration of Conformity

This Declaration of Conformity and the CE-mark affixed to the nameplate are valid for the machine within the Busch scope of delivery. This Declaration of Conformity is issued under the sole responsibility of the manufacturer.

When this machine is integrated into a superordinate machinery the manufacturer of the superordinate machinery (this can be the operating company, too) must conduct the conformity assessment process for the superordinate machine or plant, issue the Declaration of Conformity for it and affix the CE-mark.

The manufacturer

Busch GVT Ltd.
Westmere Drive
Crewe Business Park
Crewe
Cheshire, CW1 6ZD

declare that the machine(s):
- Dolphin LX 0030 B – Dolphin LX 0430 B
- Dolphin LA 0053 A – Dolphin LA 5109 A
- Dolphin LB 0063 A – Dolphin LB 4409 A
- Dolphin LM 0100 A – Dolphin LM 0800 A
- Dolphin LT 0130 A – Dolphin LT 0750 A
- Dolphin VL 0100 A – Dolphin VL 0800 A

with a serial number from 600014... to 600024...

has (have) been manufactured in accordance with the European Directives:
- 'Machinery' 2006/42/EC
- 'Electromagnetic Compatibility' 2014/30/EU
- 'Motors (LVD)' 2014/35/EU

and following the standards:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title of the Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 12100:2011-03</td>
<td>Safety of machinery- Basic concepts, general principles of design – Part 1 and 2</td>
</tr>
<tr>
<td>EN ISO 13857 : 2008-06</td>
<td>Safety of machinery- Safety distances to prevent hazard zones being reached by the upper and lower limits.</td>
</tr>
<tr>
<td>EN 1012-2 : 2011-12</td>
<td>Compressor and vacuum pumps - safety requirements part 1 and 2</td>
</tr>
<tr>
<td>EN ISO 2151 : 2009-01</td>
<td>Acoustics – Noise test code for compressors and vacuum pumps- engineering method (Grade 20).</td>
</tr>
<tr>
<td>EN 60204-1: 2007-06</td>
<td>Safety of machinery- Electrical equipment of machines- Part1: General requirements</td>
</tr>
<tr>
<td>EN 61000-6-1:2007-10</td>
<td>Electromagnetic compatibility (EMC)- Generic immunity standards</td>
</tr>
<tr>
<td>EN 61000-6-2:2003-03</td>
<td>Electromagnetic compatibility (EMC)- Generic immunity standards</td>
</tr>
<tr>
<td>EN 61000-6-3:2007-09</td>
<td>Electromagnetic compatibility (EMC)- Generic emissions standards</td>
</tr>
</tbody>
</table>

Person authorised to compile the technical file: Graham Moir
Busch GVT Ltd.
Westmere Drive
Crewe Business Park
Crewe
Cheshire, CW1 6ZD

Crewe, 19/04/2017

Tracey Sellers, General Manager

Busch GVT Ltd.
Tel: 01260 274721 Fax: 01260 276965 www.busch-gvt.co.uk e-mail sales@busch-gvt.co.uk
Amsterdam Barcelonada Basel Crewe Brussels Dublin Gothenburg Helsinki Istanbul Copenhagen Kuala Lumpur Milan Maulburg
Melbourne Montreal Moscow New York New Plymouth Oslo Paris San Jose Sao Paulo Seoul Singapore Taipei Telford Tokyo Vienna

Registered in England No. 5773576 VAT No. 8840602 22
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>940,2</td>
<td>2nd stage impeller key</td>
</tr>
<tr>
<td>940,1</td>
<td>1st stage impeller key</td>
</tr>
<tr>
<td>940</td>
<td>Shaft end key</td>
</tr>
<tr>
<td>922,1</td>
<td>Bearing locknut</td>
</tr>
<tr>
<td>922</td>
<td>Impeller locknut</td>
</tr>
<tr>
<td>921</td>
<td>Washer</td>
</tr>
<tr>
<td>920</td>
<td>Nut</td>
</tr>
<tr>
<td>905</td>
<td>Tie rod</td>
</tr>
<tr>
<td>903</td>
<td>Plug</td>
</tr>
<tr>
<td>900,1</td>
<td>Set screw</td>
</tr>
<tr>
<td>900</td>
<td>Set screw</td>
</tr>
<tr>
<td>521</td>
<td>Impeller spacer</td>
</tr>
<tr>
<td>461</td>
<td>Gland packing</td>
</tr>
<tr>
<td>452</td>
<td>Gland follower</td>
</tr>
<tr>
<td>433</td>
<td>Mechanical seal</td>
</tr>
<tr>
<td>421</td>
<td>Oil seal</td>
</tr>
<tr>
<td>400,5</td>
<td>End casing gasket</td>
</tr>
<tr>
<td>400,2</td>
<td>Bearing seal housing gasket</td>
</tr>
<tr>
<td>400</td>
<td>Impeller casing gasket</td>
</tr>
<tr>
<td>360,1</td>
<td>N.D.E. bearing cap</td>
</tr>
<tr>
<td>360</td>
<td>N.D. bearing cap</td>
</tr>
<tr>
<td>357</td>
<td>Bearing seal housing</td>
</tr>
<tr>
<td>350</td>
<td>Bearing housing</td>
</tr>
<tr>
<td>320</td>
<td>Bearing</td>
</tr>
<tr>
<td>311</td>
<td>Guide ring</td>
</tr>
<tr>
<td>230,1</td>
<td>2nd stage impeller</td>
</tr>
<tr>
<td>230</td>
<td>1st stage impeller</td>
</tr>
<tr>
<td>210</td>
<td>Shaft</td>
</tr>
<tr>
<td>137,4</td>
<td>Interplate</td>
</tr>
<tr>
<td>137,1</td>
<td>Discharge end plate</td>
</tr>
<tr>
<td>110</td>
<td>Impeller casing</td>
</tr>
<tr>
<td>107</td>
<td>End casing</td>
</tr>
</tbody>
</table>
Size 4, 5

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>940,2</td>
<td>2nd stage impeller key</td>
</tr>
<tr>
<td>940,1</td>
<td>1st stage impeller key</td>
</tr>
<tr>
<td>940</td>
<td>Shaft end key</td>
</tr>
<tr>
<td>923</td>
<td>Bearing locknut</td>
</tr>
<tr>
<td>922</td>
<td>Impeller locknut</td>
</tr>
<tr>
<td>920</td>
<td>Tie rod nut</td>
</tr>
<tr>
<td>914</td>
<td>Socket head cap screw</td>
</tr>
<tr>
<td>905</td>
<td>Tie rod</td>
</tr>
<tr>
<td>903,1</td>
<td>Plug</td>
</tr>
<tr>
<td>902</td>
<td>Stud</td>
</tr>
<tr>
<td>901,2</td>
<td>Bearing cap bolt</td>
</tr>
<tr>
<td>901,1</td>
<td>Bearing seal housing bolt</td>
</tr>
<tr>
<td>521</td>
<td>Impeller space</td>
</tr>
<tr>
<td>507</td>
<td>Flinger ring</td>
</tr>
<tr>
<td>505</td>
<td>Abutment ring</td>
</tr>
<tr>
<td>461</td>
<td>Gland packing</td>
</tr>
<tr>
<td>458</td>
<td>Lantern ring</td>
</tr>
<tr>
<td>452</td>
<td>Gland follower</td>
</tr>
<tr>
<td>433</td>
<td>Mechanical seal</td>
</tr>
<tr>
<td>400,5</td>
<td>End casing gasket</td>
</tr>
<tr>
<td>400,2</td>
<td>Bearing seal housing gasket</td>
</tr>
<tr>
<td>400</td>
<td>Impeller casing gasket</td>
</tr>
<tr>
<td>360,1</td>
<td>N.D.E. bearing cap</td>
</tr>
<tr>
<td>360</td>
<td>D.E. bearing cap</td>
</tr>
<tr>
<td>357</td>
<td>Bearing seal housing</td>
</tr>
<tr>
<td>320</td>
<td>Bearing</td>
</tr>
<tr>
<td>230,1</td>
<td>2nd stage impeller</td>
</tr>
<tr>
<td>230</td>
<td>1st stage impeller</td>
</tr>
<tr>
<td>210</td>
<td>Shaft</td>
</tr>
<tr>
<td>147</td>
<td>Crossoverpipe</td>
</tr>
<tr>
<td>140</td>
<td>Joint / intermediate plate</td>
</tr>
<tr>
<td>137,4</td>
<td>Discharge side plate</td>
</tr>
<tr>
<td>137,3</td>
<td>Suction inter plate</td>
</tr>
<tr>
<td>137,2</td>
<td>Discharge inter plate</td>
</tr>
<tr>
<td>137,1</td>
<td>Suction side plate</td>
</tr>
<tr>
<td>110,1</td>
<td>2nd stage impeller casing</td>
</tr>
<tr>
<td>110</td>
<td>1st stage impeller casing</td>
</tr>
<tr>
<td>107</td>
<td>Discharge end casing</td>
</tr>
<tr>
<td>106</td>
<td>Suction end casing</td>
</tr>
</tbody>
</table>
Size 6, 7, 8

940,2 2nd stage impeller key
940,1 1st stage impeller key
940 Shaft end key
923 Bearing locknut
922 Impeller locknut
921 Washer
920,1 Crossover pipe nut
920 Tie rod nut
914 Socket head cap screw
905 Tie rod
903,1 Plug
902 Stud
901,2 Bearing cap bolt
901,1 Bearing seal housing bolt
704,1 Counterflange blank
704 Counterflange
636 Grease nipple
521 Impeller spacer
507 Flinger ring
505 Abutment ring
461 Gland packing
458 Lantern ring
452 Gland follower
433 Mechanical seal
421 Oil seal
400,8 Crossover pipe gasket
400,5 End casing gasket
400,2 Bearing seal housing gasket
400,1 Inter plate gasket
400 Impeller casing gasket
360,1 N.D.E. bearing cap
360 D.E. bearing cap
357 Bearing seal housing
320 Bearing
230,1 2nd stage impeller
230 1st stage impeller
210 Shaft
147 Crossover pipe
140 Joint / intermediate plate
137,4 Discharge side plate
137,3 Suction inter plate
137,2 Discharge inter plate
137,1 Suction side plate
110,1 2nd stage impeller casing
110 1st stage impeller casing
107 Discharge end casing
106 Suction end casing
Size 9, 10, 11

940,2 Shaft sleeve key
940,1 Impeller key
940 Shaft end key
923 Shaft sleeve locknut
922 Bearing locknut
921 Tab washer
920,1 Manifold nut
920 Tie rod nut
914 Socket head cap screw
905 Tie rod
902 Stud
901,1 Bolt
901 Bolt
900,1 Bolt
900 Bolt
741 Valve plate assembly
704 Service liquid flange
523 Shaft sleeve
433 Mechanical seal
421,1 Oil seal
421 Oil seal
412 O-ring
401,1 N.D.E. bearing cap gasket
401 D.E. bearing cap gasket
400,8 Manifold pipe gasket
400,5 End casing gasket
400,2 Seal plate gasket
400 Impeller casing gasket
360,3 Bearing cap N.D.E.
360,2 Bearing cap D.E.
360,1 Bearing cap N.D.E.
360 Bearing cap D.E.
350 Bearing housing
322 Bearing D.E.
321 Bearing N.D.E.
230 Impeller
210 Shaft
147,1 Manifold
137,4 Side plate N.D.E.
137,1 Side plate D.E.
110 Impeller casing
107 End casing N.D.E.
106 End casing D.E.
Technical Data

For motor connection parameters see nameplate

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency [Hz]</th>
<th>Nominal Motor Rating [kW]</th>
<th>Speed [min⁻¹]</th>
<th>Volume Flow [m³/h]</th>
<th>Sound Pressure Level (EN ISO 2151) [dB(A)]</th>
<th>Dry Weight [kg]</th>
<th>Once-through Operating Liquid Flow [m³/h]</th>
<th>Ultimate Pressure [hPa abs = mbar abs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 0053 A</td>
<td>50 2.2</td>
<td>1450 45</td>
<td>71</td>
<td>47</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 2.2</td>
<td>1750 65</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0103 A</td>
<td>50 4</td>
<td>1450 100</td>
<td>71</td>
<td>52</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 4</td>
<td>1750 135</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0143 A</td>
<td>50 4</td>
<td>1450 140</td>
<td>71</td>
<td>57</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 5.5</td>
<td>1750 190</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0224 A</td>
<td>50 5.5</td>
<td>1450 220</td>
<td>71</td>
<td>88</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 7.5</td>
<td>1750 270</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0325 A</td>
<td>50 11</td>
<td>1450 320</td>
<td>74</td>
<td>150</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 15</td>
<td>1750 370</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0435 A</td>
<td>50 15</td>
<td>1450 430</td>
<td>74</td>
<td>185</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 18.5</td>
<td>1750 500</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0475 A</td>
<td>50 22</td>
<td>1450 470</td>
<td>74</td>
<td>210</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 22</td>
<td>1750 570</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0756 A</td>
<td>50 30</td>
<td>1450 750</td>
<td>74</td>
<td>290</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 30</td>
<td>1750 840</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0906 A</td>
<td>50 30</td>
<td>1450 900</td>
<td>74</td>
<td>320</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 37</td>
<td>1750 1100</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1157 A</td>
<td>50 30</td>
<td>880 950</td>
<td>76</td>
<td>540</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 30</td>
<td>1150 1380</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1507 A</td>
<td>50 45</td>
<td>880 1350</td>
<td>76</td>
<td>600</td>
<td>8</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 55</td>
<td>1150 1800</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1807 A</td>
<td>50 55</td>
<td>980 1800</td>
<td>76</td>
<td>660</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 37</td>
<td>1750 1100</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1908 A</td>
<td>50 75</td>
<td>735 1900</td>
<td>78</td>
<td>1400</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 90</td>
<td>880 2250</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 2408 A</td>
<td>50 75</td>
<td>735 2400</td>
<td>78</td>
<td>1550</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 110</td>
<td>880 2600</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 2808 A</td>
<td>50 90</td>
<td>735 2800</td>
<td>78</td>
<td>1700</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 150</td>
<td>880 3150</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 3809 A</td>
<td>50 100</td>
<td>465 2600</td>
<td></td>
<td>80</td>
<td>1950</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 90</td>
<td>600 3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 5109 A</td>
<td>50 100</td>
<td>520 3600</td>
<td></td>
<td>80</td>
<td>2050</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 110</td>
<td>600 4400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0710 A</td>
<td>50 132</td>
<td>700 5100</td>
<td></td>
<td>87</td>
<td>3050</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 132</td>
<td>410 5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1111 A</td>
<td>50 200</td>
<td>335 7050</td>
<td></td>
<td>87</td>
<td>4500</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 250</td>
<td>415 9500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0857 A</td>
<td>50 37</td>
<td>980 850</td>
<td>76</td>
<td>540</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 45</td>
<td>1150 1000</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1207 A</td>
<td>50 55</td>
<td>980 1500</td>
<td></td>
<td>685</td>
<td>8</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 60</td>
<td>1150 1600</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1507 A</td>
<td>50 55</td>
<td>880 1550</td>
<td>76</td>
<td>770</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 55</td>
<td>980 1700</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1757 A</td>
<td>50 55</td>
<td>880 1700</td>
<td>77</td>
<td>770</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 90</td>
<td>1150 2000</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 2108 A</td>
<td>50 55</td>
<td>735 2100</td>
<td>78</td>
<td>1460</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 90</td>
<td>880 2300</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 2508 A</td>
<td>50 55</td>
<td>735 2500</td>
<td>78</td>
<td>1580</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 110</td>
<td>880 3080</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 3008 A</td>
<td>50 90</td>
<td>735 3000</td>
<td>78</td>
<td>1700</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 150</td>
<td>880 3500</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 3108 A</td>
<td>50 110</td>
<td>735 3100</td>
<td>78</td>
<td>1940</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 150</td>
<td>880 3500</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 3809 A</td>
<td>50 132</td>
<td>600 3250</td>
<td></td>
<td>80</td>
<td>2100</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 150</td>
<td>700 3800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 4409 A</td>
<td>50 90</td>
<td>465 3000</td>
<td></td>
<td>80</td>
<td>2200</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 150</td>
<td>600 3800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0710 A</td>
<td>50 200</td>
<td>335 7400</td>
<td></td>
<td>87</td>
<td>3800</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 200</td>
<td>415 9350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 1011 A</td>
<td>50 200</td>
<td>335 7400</td>
<td></td>
<td>87</td>
<td>5900</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 200</td>
<td>415 9350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA 0003-1111 A, LB 0063-1011 A Technical Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>