Installation and Operating Instructions

Turbomolecular pumps
Turbo TM 2200 A

Ateliers Busch S.A.
Zone industrielle
2906 Chevenez
Switzerland

0870564263 / 131030 / Original instructions / Modifications reserved
Table of Contents

Introduction .. 2
Product description ... 3
Use .. 3
Pump used with corrosive gases 3
Pump used in presence of magnetic fields 4
Principle of operation 4
Cooling ... 5
On/ Off switch .. 5
Safety ... 5
Intended use .. 5
Safety Guideline for Turbomolecular Pumps 5
Safety notes ... 5
Transport ... 5
Storage .. 6
Short-term Storage ... 6
Installation and Commissioning 6
Installation prerequisites 6
Mounting Position and space 6
Suction Connection ... 6
Fore-Vacuum Pump Connection 7
Electrical connection/ Controls 7
Installation ... 7
Mounting .. 7
Connecting electrically 8
Controller description 8
J1 – Remote I/O .. 8
Signal description ... 8
Electrical Connections Examples: 9
J2 – Serial .. 11
Serial Cable Installation 11
Controlled Vent Procedure 11
Stop Speed Reading .. 11
Active Stop .. 11
RS 232/ RS 485 Communication Description 11
Communication Format 11
Communication Protocol 11
Window Meanings ... 13
MoniTorr .. 15
Powering on the MoniTorr 15
Operation ... 15
Maintenance ... 15
MoniTorr Installation on the Network and on the Main PC 15
MoniTorr Connectivity Kit Installation Procedure 15
Operation Notes ... 16
Application ... 16
Switching on .. 17
Turbo pump, switching off 17
Emergency Stop .. 17
Inlet Screen Installation 17
Water Cooling Connection 18
Pump Purging and Venting 18
Purge and Vent Installation 18
Reason to Purge the Turbo Pump during Operation... 18
Overhaul .. 18
Removal from Service 19
Dismantling and Disposal 19
Recommissioning ... 19
Meaning of the “WEEE” logo found in labels 19
Dimensions ... 21
Turbo TM 2200 A ... 21
Profibus Message Mapping 23
Spare parts ... 26
Technical data .. 27
EC Declaration of Conformity 29

Introduction

Congratulations on your purchase of the Busch turbomolecular pump. With watchful observation of the field’s requirements, innovation and steady development Busch delivers modern vacuum and pressure solutions worldwide.

This operating instructions contain information for
– product description,
– security,
– transport,
– storage,
– installation and commissioning
– maintenance,
– accessories,
– overhaul
of the turbomolecular pump.

For the purpose of these instructions, “handling ” the turbomolecular pump means the transport, storage, installation, commissioning, influence on operating conditions, maintenance and overhaul of the turbomolecular pump.

The user should read this instruction manual and any other additional information supplied by Busch before operating the equipment. Busch will not be held responsible for any events occurring due to non-compliance, even partial, with these instructions, improper use by untrained persons, non-authorized interference with the equipment or any action contrary to that provided for by specific national standards.

Keep this operating instructions and, if applicable, other pertinent operating instructions available on site.
Use

The turbomolecular pump is intended for

- the suction

- air and other dry, non-aggressive, non-toxic and non-explosive gases.

The Turbo TM 2200 A is a turbomolecular pump for high and ultra-high vacuum applications. It can pump any type of gas or gas compound. It is not suitable for pumping liquids or solid particles.

During normal operation, the motor is fed with a voltage of 60 Vac three-phase at 530 Hz. To avoid rotor overheating, an automatic power management routine is implemented in the control unit microprocessor. The user can select (through serial line) the gas load type between "Argon" and "Nitrogen" (or lighter gases) with window 157 0=Argon and default 1=Nitrogen. When Nitrogen is selected the power limit is fixed at 400 W, for Argon selection the user must set the maximum foreseen water cooling temperature \(T_{\text{water, max}} \) by the window 158. After these settings the controller will operate as shown in the following diagram.

This equipment is destined for use by professionals.

Pump used with corrosive gases

To prevent damage to the bearings, an inert gas must flow into the pump body around the upper bearing towards the forevacuum line. To supply the inert purge gas (e.g. nitrogen) to the pump through the purge port, connect a gas purge line to the pump.

The purging device automatically provides 20 sccm when fed with 1 bar (14 psi) absolute (atmospheric pressure).
To prevent bearing damage, Busch suggests a minimum purge gas flow rate of 20 sccm (0.33 mbar l/s). This value can be exceeded, according to the process requirements. Please contact Busch for specific applications.

The recommended gas flow maintains a pressure into the pump body higher than the forevacuum pressure.

The recommended procedure to vent the system is described in the following points:

- Close the corrosive gas flow into the system before sending the STOP signal to the Turbo pump.
- Leaving the Turbo TM 2200 A and the backing pump running and the purge gas flowing, wait for enough time to evacuate the process gases from the system (e.g. to reach the typical basic process pressure).
- Then close the gate valve connecting the Turbo pump to the chamber (if present) and the valve connecting the Turbo pump to the rough pump (if present).
- Turn off the Turbo TM 2200 A by sending the STOP signal to the controller.
- The Turbo pump will automatically start the "Controlled Venting Procedure" by default. This means that the integrated vent valve will allow a flow of venting gas (e.g. Nitrogen), automatically actuated by the controller, in order to slow the rotor down in controlled manner to a rotational frequency of 100 Hz by adopting the SSR (Stop Speed Reading) function. All other system operations should be carried out at rotational frequencies of less than 100 Hz.
- When the Turbo pump and the backing pump are stopped and the system is at atmospheric pressure, for a better bearing protection it is advisable to leave the purge gas flowing into the Turbo-V pump, with the chamber or the Turbo-V vent valve opened, to avoid system overpressures. Evidently, the default settings can be bypassed and the "Controlled Venting Procedure" can be eliminated, as explained in a previous section of this manual.

Additionally, the vent port on the envelope can be used to connect an external vent valve: unscrew the threaded plug and screw the vent valve into the pump to vent pump and system. The last described venting modalities should be avoided because they may cause uncontrolled venting. Please contact Busch if you cannot operate in the instructed manner.

Uncontrolled venting may seriously damage the pump and void the pump warranty. Use the Busch "Controlled Vent Procedure" or contact Busch.

Pump used in presence of magnetic fields

Magnetic fields induce eddy currents in the rotor of a turbomolecular pump that tend to oppose its rotation. The result is increased electrical power consumption by the motor, most of which is dissipated in the rotor. Since the rotor is not in contact with the stator the above power can leave the rotor mainly by radiation and hence the rotor may be overheated while static parts of the pump remain cool. This effect is strongly dependant from the intensity, time function and distribution of the magnetic field.

In general, therefore, an increase in jump current can be expected. If this increase is lower than 50% of the current value drawn by the motor in high vacuum operation, no particular problem should be expected. However if the effect is grater, than the case should be carefully reviewed by Busch specialist.

As a matter of fact, in case of high magnetic fields, also important forces might be generated and applied to the rotor.

Principle of operation

The pumping action is obtained through a high speed turbine (max. 31800 rpm) driven by a high performance 3-phase electric motor. The Turbo TM 2200 A is free of contaminating agents and, therefore, is suitable for applications requiring a « clean » vacuum.

The pump consists of a high frequency motor a turbine fitted with 5 bladed stages and 2 Macrotorr stages. The turbine rotates in an anticlockwise direction when viewed from the high vacuum flange end.

The turbine rotor is supported by permanently lubricated high precision ceramic ball bearings installed on the forevacuum side of the pump. The static blades of the stators are made of aluminium alloy. These are supported and accurately positioned by spacer rings.

The Macrotorr stators are in the form of self-positioning machined discs with pumping channels and an opening restricted by the corresponding rotor discs. These are made of aluminium alloy.

Is equipped with auxiliary connectors to be controlled from a remote site by means of an host computer connected through a serial line (RS232 or RS485).

Detailed information is supplied in the appendix « Technical information ».
Cooling
The pump can be water cooled only. For this purpose the customer must use the dedicated channel on the pump body.

Cooling may be carried out either through an open circuit with eventual discharge of the water, or using a closed circuit cooling system.

The water temperature must be between +10°C and +30°C, with an inlet pressure between 3 and 5 bar. In any case the water flow must not be less than 3.5 l/min.

On/Off switch
The turbomolecular pump comes without on/off switch. The control of the turbomolecular pump is to be provided in the course of installation.

Safety

Intended use
DEFINITION: For the purpose of these instructions, “handling” the vacuum pump means the transport, storage, installation, commissioning, influence on operating conditions, maintenance, troubleshooting and overhaul of the turbomolecular pump.

The turbomolecular pump is intended for industrial use. It must only be handled by qualified personnel.

The allowed media and operational limits according to the “Product Description” and the “Installation Prerequisites” of the vacuum pump shall be observed both by the manufacturer of the machinery into which the turbomolecular pump is to be incorporated and by the operator.

The maintenance instructions shall be observed.

Prior to handling the turbomolecular pump these operating instructions shall be read and understood. If anything remains to be clarified please contact your Busch representative!

Safety Guideline for Turbomolecular Pumps
Turbomolecular pumps as described in the following operating manual contain a large amount of kinetic energy due to the high rotational speed in combination with the specific mass of their rotors.

In case of a malfunction of the system for example rotor/ stator contact or even a rotor crash the rotational energy may be released.

A thermistor sensor is mounted near the upper bearing in order to read the bearing temperature and to prevent the pump from overheating.

A thermistor sensor is mounted near the water cooling channel in order to evaluate the cooling efficiency.

Safety notes
The turbomolecular pump has been designed and manufactured according to the state-of-the-art. Nevertheless, residual risks may remain. These operating instructions inform about potential hazards where appropriate. Safety notes are tagged with one of the keywords DANGER, WARNING and CAUTION as follows:
Storage

Short-term Storage

In order to guarantee the maximum level of performance and reliability of turbomolecular pumps, the following guidelines must be followed:

- Make sure that the suction connection/ gas inlet and the gas discharge/ pressure connection are closed (leave the provided plugs in)
- The storage of turbomolecular pumps must take place under the following environmental conditions:
 - Temperature range: -20°C to +70°C
 - Relative humidity range: 0 to 95% (non condensing)
- The turbomolecular pumps must be always soft-started when received and operated for the first time by the customer.
- The shelf life of a turbomolecular pump is 10 months from the shipping date.

CAUTION

If for any reason the shelf life time is exceeded, the pump has to be returned to the factory.

Please contact the local Busch Vacuum Sales and Service representative for informations.

NOTE: If the Turbo TM 2200 A pump has been stored at a temperature below 5°C, please wait for the system to reach an ambient operating temperature of +5°C to 35°C.

Installation and Commissioning

Installation prerequisites

CAUTION

In case of non-compliance with the installation prerequisites:

- Risk of damage or destruction of the turbomolecular pump and adjoining plant components!
- Risk of injury!

The installation prerequisites must be complied with.

- Make sure that the integration of the turbomolecular pump is carried out such that the essential safety requirements of the Machine Directive 2006/42/EC are complied with (in the responsability of the designer of the machinery into which the vacuum pump is to be incorporated; see also the note in the EC-Declaration of Conformity)

Mounting Position and space

WARNING

Cause its weight, the pump must be handled by means of suitable moving and handling tools. Use the suitable handling kit eyebolts screwed into the holes of the pump body.

- Do not install or use the pump in an environment exposed to atmospheric agents (rain, snow, ice), dust, aggressive gases, or in explosive environments or those with a high fire risk.
- Make sure that the environmental conditions comply with the protection class of the drive motor (according to the nameplate)
- During operation, the following environmental conditions must be respected:
 - Maximum pressure: 2 bar above atmospheric pressure

Suction Connection

- Temperature: from +5°C to +35°C
- Relative humidity: 0-95% (non condensing)

CAUTION

Do not remove the adhesive and protective cap before connecting the turbo pump to the system.

CAUTION

Do not remove the bolted cap before connecting the turbo pump to the system.

Remove connector protections only after fixing the turbo pump to the system.

CAUTION

Remove connector protections only after fixing the turbo pump to the system.

CAUTION

Do not put hands into the inlet aperture.

Risk of body damage!
CAUTION
Intruding foreign objects or liquids can destroy the vacuum pump.

WARNING
If a rotor failure occurs, the connection of the pump to the system could be subjected to a significant torque. If the connection is not sufficient to withstand that torque, the pump could detach from the system or the motor housing could detach from the pump envelope. In this case metal fragments could be projected from the pump or system, which could cause serious injury or death and/or damage to surrounding equipment.

Dimension of the inlet flange:
- ISO 250 F

The following table shows, for the ISO-F suction flange, the necessary number of screws and the relevant fixing torque.

<table>
<thead>
<tr>
<th>Suction flange</th>
<th>Number of screws</th>
<th>Fixing torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 250 F</td>
<td>12</td>
<td>30 Nm</td>
</tr>
</tbody>
</table>

The class of the steel screws for « F » flange must be > 12.9

The system can only be fixed through its ISO 250 F flange. Fixing must be done according to ISO 1609 norm. Steel bolts with a strength class at least of 1200 N/mm² must be used.

To connect the Turbo TM 2200 A pump to the ISO F inlet flange position the integrated inlet screen-centering ring as shown in the figure.

Then fix the two flanges with the bolts as shown in the following figures (12 x M10 steel bolts for ISO F flange).

Fore-Vacuum Pump Connection
Dimension of the exhaust flange:
- KF 40 NW

A flange KF 40 NW is available to connect the turbomolecular pump to the forevacuum pump. A hose or vacuum approved pipe can be used. If a rigid pipe is used, any vibration generated by the mechanical pump must be eliminated through the use of bellows.

NOTE: The Turbo TM 2200 A pump is characterized by its high compression ratio also for oil vapors. When using a mechanical oil-sealed pump, it is advisable to install a suitable trap between the turbo pump and the fore-vacuum pump in order to prevent oil backstreaming.

Electrical connection/ Controls
- Make sure that the stipulations acc. to the EMC-Directive 2004/108/EC, the EN-standards, electrical and occupational safety directives and the local or national regulations, respectively, are complied with (this is in the responsibility of the designer of the machinery into which the vacuum pump is to be incorporated; see also the note in the EC-Declaration of Conformity).
- Make sure that the power supply is compatible with the data on the nameplate of the drive motor
- Make sure that an overload protection according to EN 60204-1 is provided for the drive motor
- Make sure that the drive of the vacuum pump will not be affected by electric or electromagnetic disturbance from the mains; if necessary seek advice from the Busch service

Installation
Mounting
- Make sure that the „Installation Prerequisites“ are complied with
- Set down or mount the vacuum pump at its location
Connecting electrically

WARNING
Risk of electrical shock, risk of damage to equipment.

Electrical installation work must only be executed by qualified personnel that knows and observes the following regulations:
- IEC 364 or CENELEC HD 384 or DIN VDE 0100, respectively,
- IEC-Report 664 or DIN VDE 0110,
- BGV A2 (VBG 4) or corresponding national accident prevention regulation.

Controller description

The dedicated controller is a solid-state frequency converter which is driven by a single chip microcomputer.

The controller can be operated by a remote host computer via the serial connection (a Window-based software is available as an option), or by the remote I/O connector.

At every power-up the controller is in "Remote Mode" of operation and accepts only commands from J1 remote I/O connector. To put it in "Serial Mode" of operation please refer to the serial command table.

J1 – Remote I/O

This connector carries all the input and output signals to remote control the Turbo TM 2200 A.

It is a 15-pins D type connector; the available signals are detailed in the table, the following paragraphs describe the signal characteristics and use.

<table>
<thead>
<tr>
<th>Pin N.</th>
<th>Signal Name</th>
<th>Input/Out put</th>
<th>ISOLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START/STOP (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>2</td>
<td>START/STOP (-)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>3</td>
<td>INTERLOCK (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>4</td>
<td>INTERLOCK (-)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>5</td>
<td>SPEED SETTING (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>6</td>
<td>FAULT COMMON/OUT</td>
<td>OUT</td>
<td>Relay</td>
</tr>
<tr>
<td>7</td>
<td>SOFT START (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>8</td>
<td>SET POINT</td>
<td>OUT</td>
<td>Relay</td>
</tr>
<tr>
<td>9</td>
<td>+24 Vdc</td>
<td>OUT</td>
<td>Transformer</td>
</tr>
<tr>
<td>10</td>
<td>PURGE (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>11</td>
<td>SET POINT</td>
<td>OUT</td>
<td>Relay</td>
</tr>
<tr>
<td>12</td>
<td>VENT (+)</td>
<td>IN</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>13</td>
<td>FAULT N.O</td>
<td>OUT</td>
<td>Relay</td>
</tr>
<tr>
<td>14</td>
<td>ANALOG OUTPUT</td>
<td>OUT</td>
<td>Optocoupled</td>
</tr>
<tr>
<td>15</td>
<td>GROUND OUTPUT</td>
<td>OUT</td>
<td>Transformer</td>
</tr>
</tbody>
</table>

Signal description

- **START/STOP**: input signal to start or stop the pump. With the supplied cover connector the START/STOP (+) signal is connected to the +24 Vdc pin and the START/STOP (-) signal to the GROUND pin: in this condition the pump automatically starts as soon as the controller recognises the input supply ("Plug & Pump").
- **INTERLOCK**: input signal to confirm the pump rotation. With the supplied cover connector the INTERLOCK (+) signal is connected to the +24Vdc pin and the INTERLOCK (-) signal to the GROUND pin, in this condition the pump automatically starts as soon as the controller recognises the input supply ("Plug & Pump"). These pins must be always connected to +24V and ground to allow pump running.
- **SPEED SETTING**: PWM input signal to set the pump speed. The PWM signal characteristics must be the following:
 - Frequency: 100 Hz +/- 20%
 - Amplitude: high level from 12 to 24 V
 - Duty cycle range: from 25% to 75% corresponding to a pump speed from 500 Hz to 530 Hz linearly (see the following diagram).

![Duty Cycle (%)

By Moving the Pump Speed (Hz) - Frequency]

The “Low Speed” function can also be activated by serial line with win.001, and the low speed value can be adjusted via serial command win.117.

Both low speed value (win.117) and high-speed value (win.120) are limited between 500Hz (can’t be set by the user) and “Maximum excitation frequency” (win.121, 530Hz default).

NOTE: The duty cycle percentage is referred to the low level portion of the PWM period.

SOFT START: input signal to activate the soft start function. This function must be activated (pin-7 shorted with pin-9) if the pump remains unused for 1 month or more, and deactivated for the next run-up. The soft Start phase is around 45 minutes long. The soft start function is factory enabled for the first system start-up. After the first pump start-up until the normal status, the soft start is automatically disabled.

ANALOG OUTPUT: this output signal is a voltage (from 0 to 10 Vdc) proportional to a reference quantity (frequency or power) set by the user through serial line (window 111). The default setting is the frequency (see the following example diagram).

The voltage is provided between pins 14 and 15. An high impedance input should be connected to this output (>100 kΩ).
FAULT: this relay output signal is closed when any system fault condition is detected. To detect the type of failure the serial protocol is needed (see the para. "RS232-485 Communication Description").

SET POINT: this relay output signal is enabled when the reference quantity chosen (frequency, current or time) is higher than the set threshold. The signal can be "active close", or "active open". Moreover, if the reference quantity is the frequency or the current drawn, it is possible to set the hysteresis (in % of the threshold value) to avoid bouncing.

For example:
- reference quantity: frequency (window 101=0)
- threshold: 500 Hz (window 102=500)
- hysteresis: 1% (window 103=1)
- activation type: "active close" (window 104=1)

The set point output stays open until the frequency becomes higher than 505 Hz (that is 500 Hz + 1% of 500 Hz), then the output goes closed and stays closed until the frequency becomes lower than 495 Hz (that is 500 Hz – 1% of 500 Hz).

It is possible to mask the set point checking for a programmable mask time (window 103).

The SET POINT signal has the following default settings:
- reference quantity: controller status
- threshold: not relevant
- hysteresis: not relevant
- activation type: active close (NO)
- delay time: 0 second

NOTE: The Navigator Software ver. 3.0 (optional) or any user developed serial communication software (according to RS 232-485 Communication Protocol) allows the operator to set all the programmable feature.

When no external input-output device is available the J1 connector must be closed with the supplied mating connector that short-circuits the START and INTERLOCK inputs with the GROUND input.

Electrical Connections Examples:
- Start-Stop or Interlock

Instead of switch is possible to use transistor.
- Soft Start, Speed Setting, Purge, Vent
PURGE/VENT VALVES: the pump integrates the “purge” and “vent” valves. The two valves are Normally Closed so if a power fail occur, the valves will remain closed.

The valves operating mode is independent from the controller operating mode. That means the user can manage the pump by serial line (start/stop, soft start...) and drive the valves by remote I/O connector, or vice versa. The valve operating mode can be set by serial line with Win.125 and 146, see following diagram for details.

In remote mode you can open the purge valve (N.C.) connecting pin10 of J1 to pin 9, or supplying 24 Vdc between pin 10 and pin 15. The same thing occurs for the vent valve with pin 12.

Note that the vent and purge valve can also be controlled by means of the serial connection (see the following diagram for details).
J2 – Serial

This is a 9 pin D-type serial input/output connector to control via an RS 232 or RS 485 connection the Turbo TM 2200 A.

<table>
<thead>
<tr>
<th>PIN N.</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESERVED</td>
</tr>
<tr>
<td>2</td>
<td>TX (RS232)</td>
</tr>
<tr>
<td>3</td>
<td>RX (RS232)</td>
</tr>
<tr>
<td>4</td>
<td>SPARE</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>A+ (RS485)</td>
</tr>
<tr>
<td>7</td>
<td>SPARE</td>
</tr>
<tr>
<td>8</td>
<td>B- (RS485)</td>
</tr>
<tr>
<td>9</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

A serial communication kit with a serial cable and the T-Plus software (969-9883) is available (optional).

Serial Cable Installation
In order to maintain the IP-54 protection level, please use a certified IP-54 connector or the one provided by Busch.

Controlled Vent Procedure
The default setting for vent operating mode is “Controlled Vent Procedure” (Win 125 = 0).

When activated the procedure guarantees that the pump is slowed down properly modulating in automated way the vent valve.

If WIN 125= 1 the vent valve is opened via serial or Remote I/O, but the “Controlled Vent Procedure” is automatically activated until the speed of pump is 100 Hz.

Stop Speed Reading
This function allows the user to read the pump rotational frequency (window 203) even after a stop command. The function can be activated/deactivated by serial line (window 167).

If activated, all the related functions (set point out, output voltage) will follow the frequency reading.

Active Stop
This function allows the user to brake the pump without venting. This function must be used carefully and with the help of Busch personnel. The function can be activated by serial line (window 107).

RS 232/ RS 485 Communication Description
Both the RS 232 and the RS 485 interfaces are available on the connector P2.

The communication protocol is the same (see the structure below), but only the RS 485 manages the address field. Therefore to enable the RS 485 is necessary to select the type of communication as well as the device address by means of the T-Plus software.

Communication Format
- 8 data bit
- no parity
- 1 stop bit
- Baud rate: 600/1200/2400/4800/9600 programmable

Communication Protocol
The communication protocol is a MASTER/SLAVE type where:
- Host = MASTER
- Controller = SLAVE

The communication is performed in the following way:
- the host (MASTER) send a message + CRC to the controller (SLAVE);
- the controller answer with an answer + CRC to the host.

The MESSAGE is a string with the following format:
- <STX>+<ADDR>+<WIN>+<COM>+<DATA>+<ETX>+<CRC>

NOTE: When a data is indicated between two quotes (‘...’) it means that the indicated data is the corresponding ASCII character.

where:
- <STX> (Start of transmission) = 0x02
- <ADDR> (Unit address) = 0x80 (for RS 232)
- <ADDR> (Unit address) = 0x80 + device number (0 to 31) (for RS 485)
- <WIN> (Window) = a string of 3 numeric character indicating the window number (from ‘000’ to ‘999’); for the meaning of each window see the relevant paragraph.
- <COM> (Command) = 0x30 to read the window, 0x31 to write into the window.
- <DATA> = an alphanumeric ASCII string with the data to be written into the window. In case of a reading command this field is not present. The field length is variable according to the data type as per the following table:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Field Length</th>
<th>Valid Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic (L)</td>
<td>1</td>
<td>‘0’ = OFF ‘1’ = ON</td>
</tr>
<tr>
<td>Numeric (N)</td>
<td>6</td>
<td>‘-, ‘+ ‘,’ ‘0’ ‘... ‘9’ right justified with ‘0’</td>
</tr>
<tr>
<td>Alphanumeric (A)</td>
<td>10</td>
<td>From blank to ‘_’ (ASCII)</td>
</tr>
</tbody>
</table>

<ETX> (End of transmission) = 0x03

<CRC> = XOR of all characters subsequent to <STX> and including the <ETX> terminator. The value is hexadecimal coded and indicated by two ASCII character.

The addressed SLAVE will respond with an ANSWER whose structure depends from the MESSAGE type.

When the MESSAGE is a reading command, the SLAVE will respond transmitting a string with the same structure of the MESSAGE.

NOTE: Some error settings are foreseen:

CAUTION
The vent could damage the pump. Please, use the Busch “Controlled Vent Procedure” or refer to Busch personnel.
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td>1 byte</td>
<td>-</td>
<td>After a read instruction of a logic window.</td>
</tr>
<tr>
<td>Numeric</td>
<td>6 bytes</td>
<td>-</td>
<td>After a read instruction of a numeric window.</td>
</tr>
<tr>
<td>Alphanumeric</td>
<td>10 bytes</td>
<td>-</td>
<td>After a read instruction of an alphanumeric window.</td>
</tr>
<tr>
<td>ACK</td>
<td>1 byte</td>
<td>(0x6)</td>
<td>The command execution has been successfully completed</td>
</tr>
<tr>
<td>NACK</td>
<td>1 byte</td>
<td>(0x15)</td>
<td>The command execution has been failed</td>
</tr>
<tr>
<td>Unknown Window</td>
<td>1 byte</td>
<td>(0x32)</td>
<td>The specified window in the command is not a valid window</td>
</tr>
<tr>
<td>Data Type Error</td>
<td>1 byte</td>
<td>(0x33)</td>
<td>The data type specified in the command (Logic, Numeric or Alphanumeric) is not accorded with the specified Window.</td>
</tr>
<tr>
<td>Out of Range</td>
<td>1 byte</td>
<td>(0x34)</td>
<td>The value expressed during a write command is out of the range value of the specified window.</td>
</tr>
<tr>
<td>Win Disabled</td>
<td>1 byte</td>
<td>(0x35)</td>
<td>The specified window is Read Only or temporarily disabled (for example you can’t write the Soft Start when the Pump is running).</td>
</tr>
</tbody>
</table>

NOTE: Using the RS 485 interface, the message structure remains identical to the one used for the RS 232 interface, the only difference being that the value assigned to the ADDRESS <ADDR>.

The controller can answers with the following response types:

Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td>1 byte</td>
<td>-</td>
<td>After a read instruction of a logic window.</td>
</tr>
<tr>
<td>Numeric</td>
<td>6 bytes</td>
<td>-</td>
<td>After a read instruction of a numeric window.</td>
</tr>
<tr>
<td>Alphanumeric</td>
<td>10 bytes</td>
<td>-</td>
<td>After a read instruction of an alphanumeric window.</td>
</tr>
<tr>
<td>ACK</td>
<td>1 byte</td>
<td>(0x6)</td>
<td>The command execution has been successfully completed</td>
</tr>
<tr>
<td>NACK</td>
<td>1 byte</td>
<td>(0x15)</td>
<td>The command execution has been failed</td>
</tr>
<tr>
<td>Unknown Window</td>
<td>1 byte</td>
<td>(0x32)</td>
<td>The specified window in the command is not a valid window</td>
</tr>
<tr>
<td>Data Type Error</td>
<td>1 byte</td>
<td>(0x33)</td>
<td>The data type specified in the command (Logic, Numeric or Alphanumeric) is not accorded with the specified Window.</td>
</tr>
<tr>
<td>Out of Range</td>
<td>1 byte</td>
<td>(0x34)</td>
<td>The value expressed during a write command is out of the range value of the specified window.</td>
</tr>
<tr>
<td>Win Disabled</td>
<td>1 byte</td>
<td>(0x35)</td>
<td>The specified window is Read Only or temporarily disabled (for example you can’t write the Soft Start when the Pump is running).</td>
</tr>
</tbody>
</table>

NOTE: The RS 485 is a 2-wire (gnd optional) half-duplex communication link.

Examples:

COMMAND: START

Source: PC

Destination: Controller

<table>
<thead>
<tr>
<th>02 80 30 30 30 31 03 42 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW WR ON ETX CRC</td>
</tr>
</tbody>
</table>

Source: Controller

Destination: PC

<table>
<thead>
<tr>
<th>02 80 06 03 38 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR ACK ETX CRC</td>
</tr>
</tbody>
</table>

Command: STOP

Source: PC

Destination: Controller

<table>
<thead>
<tr>
<th>02 80 30 30 30 31 03 42 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW WR OFF ETX CRC</td>
</tr>
</tbody>
</table>

Source: Controller

Destination: PC

<table>
<thead>
<tr>
<th>02 80 06 03 38 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR ACK ETX CRC</td>
</tr>
</tbody>
</table>

Command: SOFT-START (ON)

Source: PC

Destination: Inverter

<table>
<thead>
<tr>
<th>02 80 31 30 30 31 03 42 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW WR ON ETX CRC</td>
</tr>
</tbody>
</table>

Source: Inverter

Destination: PC

<table>
<thead>
<tr>
<th>02 80 06 03 38 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR ACK ETX CRC</td>
</tr>
</tbody>
</table>

Command: SOFT-START (OFF)

Source: PC

Destination: Inverter

<table>
<thead>
<tr>
<th>02 80 31 30 30 31 03 42 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW WR OFF ETX CRC</td>
</tr>
</tbody>
</table>

Source: Inverter

Destination: PC

<table>
<thead>
<tr>
<th>02 80 06 03 38 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR ACK ETX CRC</td>
</tr>
</tbody>
</table>

Command: READ PUMP STATUS

Source: PC

Destination: Controller (with address=3)

<table>
<thead>
<tr>
<th>02 83 32 30 35 30 03 38 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW RD ETX CRC</td>
</tr>
</tbody>
</table>

Source: Controller (with address=3 in stop status)

Destination: PC

<table>
<thead>
<tr>
<th>02 83 32 30 35 30 03 38 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW DATA (STATUS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03 38 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETX CRC</td>
</tr>
</tbody>
</table>

Command: READ SERIAL CONFIGURATION

Source: PC

Destination: Controller (with address=3 in 485 mode)

<table>
<thead>
<tr>
<th>02 83 35 30 34 30 03 38 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW RD DATA ETX CRC</td>
</tr>
</tbody>
</table>

Source: Controller

Destination: PC

<table>
<thead>
<tr>
<th>02 83 35 30 34 30 03 42 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX ADDR WINDOW RD DATA ETX CRC</td>
</tr>
<tr>
<td>N.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>008</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>104</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>107</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>108</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>109</td>
</tr>
<tr>
<td>111</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>114</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>117</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>121</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>122</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>124</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>146</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>147</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>152</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>157</td>
</tr>
<tr>
<td>167</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>201</td>
</tr>
<tr>
<td>202</td>
</tr>
<tr>
<td>203</td>
</tr>
<tr>
<td>204</td>
</tr>
<tr>
<td>205</td>
</tr>
<tr>
<td>206</td>
</tr>
<tr>
<td>211</td>
</tr>
<tr>
<td>216</td>
</tr>
<tr>
<td>222</td>
</tr>
<tr>
<td>223</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>301</td>
</tr>
<tr>
<td>302</td>
</tr>
<tr>
<td>303</td>
</tr>
<tr>
<td>310 to 399</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>402</td>
</tr>
<tr>
<td>502</td>
</tr>
<tr>
<td>503</td>
</tr>
<tr>
<td>504</td>
</tr>
</tbody>
</table>

Window N. 206 Bit Description

TOO HIGH LOAD
SHORT CIRCUIT
OVERVOLTAGE
AUX FAIL
NO CONNECTION
PUMP OVERTEMP.
CONTROLL. OVERTEMP.
POWER FAIL
MoniTorr

An integrated MoniTorr card is suitable for the Turbo TM 2200 A. This feature allows the pump’s vibration spectra acquisition and download. The necessary hardware is totally integrated into the controller and consists of one PCB card and one accelerometer fixed on the controller’s side.

The MoniTorr card allows to:

- perform programmed maintenance on the turbo pump
- continuously monitor the turbo pump operating conditions
- identify the wear conditions of one or two bearings.

Powering on the MoniTorr

At pump’s power-on, the POWER LED comes on and the system proceeds with its self-configuration routine. Data acquisition and processing will be automatically activated at the moment in which the turbo pump reaches its maximum speed (Normal Operation). The MoniTorr card is powered from the controller.

Operation

At predefined intervals, the Monitorr will also acquire the data related to the vibration spectrums, power and temperature in addition to other data detected by the Turbo controller. All the data must be transferred to a PC (by means of the “File Download” program) where are stored and where can be analyzed by Busch’s specialised personnel.

Maintenance

The MoniTorr card doesn’t require any maintenance. Any intervention must be carried out by authorised personnel.

In case of failure, the Busch Repair Service is available or Advanced Exchange Service that provides you with a regenerated controller in replacement of the faulty one.

MoniTorr Installation on the Network and on the Main PC

The RS-485 interface allows connecting more than one system in network (up to 32). In this way it is possible to download all the spectrums data with a single PC through a protocol converter (not yet available) which operate as a gateway from 485 to 232 link.

The controller provides the serial address of the MoniTorr option. Every controller must therefore have a different serial address so as to avoid conflicts on the network. Every controller has “0” default serial address. So the user must set the controller’s address.

The following figure shows the connection of the MoniTorr to the RS485 network.

NOTE: The protocol converter is not strictly needed for MoniTorr operation. It is also possible to use the standard RS232 to RS485 converter and the standard optical to RS232 converter.

In order to install and operate the MoniTorr card of the Turbo-V 2K-G it’s necessary to get the Monitor Connectivity Kit (P/N 969-9260). The user should install it on any windows based PC with at least one RS232 port.

MoniTorr Connectivity Kit Installation Procedure

- Install the File VT Serial Address Configurator on PC (launch VT-SAC\setup.exe on CD Rom)
- Connect the RS232 cable between the PC serial port and the first TV 3KG serial port

- Launch the VT Serial Address Configurator program
- Set the Serial Communication as following:
 - Baud rate 9600
 - COM Port = Your PC COM Port Number (generally COM1)
 - Numeric: a different address for each pump (0…1,2…..31)
 - Click on “Set the new address” button

- Close the VT Serial Address Configurator program
- Repeat all operations from the point 2 choosing a new address for each pump
- Install the MoniTorr File Download Program PC (FileDW\Setup.exe on CD rom); see Installing the File Download Software paragraph
- Connect the RS232 cable from PC to Protocol Converter
- Connect the RS485 cable between the protocol converter and the network connector of each pump
Check if Baud Rate of protocol converter is fixed at 115K2 (switch between 9 position and F position)

Connect the power supply to protocol converter
Launch the file download software
Select menu File/Download Mode and check the following fields:
 - Trigger 1
 - Mode: Number of file (# file)
Select menu File/Archive Time and select the number of days for a periodical file download to be sent (for example 7 days)
Read the Archive Saving Method Procedure Paragraph
Start the system

NOTE: The computer can be always connected to the MoniTorr or only sometimes to download the vibration files. In order to permit a correct analysis a periodically (an archive file every 1 or 2 weeks) downloading is recommended.

Operation Notes
Application

CAUTION
The turbomolecular pump is designed for operation under the conditions described below.
In case of disregard risk of damage or destruction of the vacuum pump!
Risk of Injury!
The turbomolecular pump must be operated under the conditions described below.

CAUTION
Make all electrical an pneumatic connections before the use of the system.
While heating the vacuum chamber, the temperature of the inlet flange must not exceed 80°C.
While operating the pump the rotor temperature must never exceed 120°C. The user must be sure to set the correct gas mode, according to the pumped gas : 1 for N2 and lighter gases, 0 for Argon (default). See the chapter "Window Meanings" for details.

CAUTION
Never use the turbo pump when the inlet flange is not connected to the vacuum chamber or is not blanked.
Do not touch the turbo pump or any of its accessories during the heating process. The high temperatures may cause burns.

CAUTION
Avoid impacts, oscillations or harsh movements of the pump when in operation. The bearings may become damaged.
Use air or inert gas free from dust or particles for venting the pump. The pressure at the vent port must be less than 1 bar (above atmospheric pressure).
For pumping aggressive gases containing particulate or aggressive pollutants for the bearings, these pumps are fitted with a special port to allow a steady flow of inert gas (like N2, He) for pump bearing protection (see the chapter "Pump Used with Corrosive Gases".

CAUTION
Never use the pump with corrosive gases or vapor to avoid damage to the internal materials of the pump.

CAUTION
When employing the pump for pumping toxic, flammable, or radioactive gases, please follow the required procedures for each gas disposal.
Do not use the pump in presence of explosive gases.
The pump is designed to pump high throughput of N2, Ar and lighter gas. Should you need to pump gases heavier than Ar, please contact Busch technical support for information.
Switching on
Before starting the system, please check that the mating I/O connector is unplugged. If the system is connected to a remote I/O, make sure the stop signal (see para. "J1-REMOTE I/O") is given.

To start the system please follow the following steps:
- unplug (if present) the system mating I/O connector
- plug on the mains
- pump the vacuum chamber down to 0.1 mbar
- give the Turbo pump a start signal by one of the following methods:
 - connecting the provided mating I/O connector
 - giving a remote start signal through the I/O connector (see chapter "J1-REMOTE I/O")
 - giving a remote start signal via the serial RS 232/485 interface (see chapter "RS232/RS485 Communication Description").

WARNING
When power is supplied and factory default 15 pin mating connector is inserted, the Turbo TM 2200 A will start automatically.

CAUTION
The controller is furnished already mechanically and electrically connected to the pump. Detaching of the controller from the pump must be carried out by authorized Busch Vacuum Technologies personnel only.

NOTE: When you run the Turbo TM 2200 A for the very first time, the control unit automatically starts the system with a special procedure which protects the bearings from possible damages (SOFT START). The system is launched step by step at full speed in a time variable from 10 mins up to 1 hour. After the system has reached the full speed, the soft start procedure is disabled and following starts are performed in the normal way.

NOTE: In order to maintain the IP-54 protection level you must use only the connectors provided with the pump. Use connectors PN: 969-9957 or 969-9958 for the power cable and fix it to the controller by means of the suitable retaining bracket (see the following figure). Use this power cord and plug in conjunction with a properly grounded power socket to avoid electrical shock and to satisfy CE requirements.

The system is provided with a green status led signal.
The green LED located on the Turbo TM 2200 A base front panel indicates with its flashing frequency the system operating conditions:
- with no flashing: the pump is normally rotating;
- slowly flashing (period of about 400 ms): the system is in ramp, or in braking, or in Stop, or in "Waiting for interlock" status;
- fast flashing (period of about 200 ms): error condition.

Turbo pump, switching off
To stop the pump you can use one of the following methods:
- unplugging the provided mating I/O connector
- giving a remote stop signal through the I/O connector (see para. "J1-REMOTE I/O" of annex "Technical Information")
- giving a remote stop signal via the serial RS 232/485 interface (see chapter "RS232/RS 485 Communication Description").

Emergency Stop
To immediately stop the Turbo TM 2200 A in an emergency condition it is necessary to remove the mains. It must be however noted that this operation, in addition to cutting off the pump power, also cuts off all other controller functions, such as Purge and Controlled Vent management and the capability of communicating with the system in which the pump is integrated via I/Os, Serial or Profibus.

Furthermore, this operation may not ensure the immediate stopping of the rotor. Rotation speed of the rotor will decrease according to the degree of vacuum present in the system.

Inlet Screen Installation
The inlet screen prevents the blades of the pump from being damaged by debris greater than 5.2 mm diameter.

The inlet screen does reduce the pumping speed by about 10%.

The inlet screen is fitted in the upper part of the pump, as shown in the figure.
It is welded to the center ring of the ISO 250 F viton gasket.

The center ring can be installed as shown in the following figure.

The following figure shows the ISO 250 F pump flange section with the protection screen fitted on it. As you can see, the overall dimensions do not change as the inlet screen remains inside the pump profile.
CAUTION
If the chamber of the system is “baked” at a high temperature, a shield should be installed to prevent thermal radiation heating the high vacuum flange on the pump. The maximum temperature allowed for the inlet flange is 80°C.

Water Cooling Connection
The pumping system is supplied with a metallic model water cooling kit.

Two 9-10 mm internal diameter rubber or plastic tubes from the water supply must be fitted to the two dedicated nozzles.

NOTE: These tubes must be held on the respective nozzles using hose clips to avoid that the tube(s) gets loose or disconnected during operation.

Cooling may be carried out either through an open circuit with eventual discharge of the water, or using a closed circuit cooling system.

The water temperature must be between +10°C and +30°C, with an inlet pressure between 3 and 5 bar. In any case the water flow must not be less than 3.5 l/min.

The customer can alternatively order the 90°C bend water cooling kit, plastic model (969-9348) or metallic model (696-9338).

NOTE: The water electrical conductance must be \(\leq 500 \, \mu\text{s/cm}\). When the conductance is higher, in closed water circuit, the use of up to 20% of Ethyl-Glycole is suggested.

Pump Purging and Venting
The Turbo TM 2200 A pump is equipped with an integrated purging and venting valve device. Both valves are fed through a single gas port, with 1/8 NPT thread or Swagelok connector.

Purge and Vent Installation
To install the gas purge and vent line it is necessary to unscrew the purge/vent port cover, and then connect the gas line.

Reason to Purge the Turbo Pump during Operation
Keep the gas purge on at all times during pump operation, during stops, and even if there is no flow of aggressive gases.
Removal from Service

Dismantling and Disposal

Recommissioning

CAUTION

Only authorised personnel may carry out dismantling work on the vacuum pump. Before work begins, the operator of the turbomolecular pump must fill in a form or a «Declaration of Decontamination» that provides information on possible dangers and appropriate measures.

If this form has not been filled in completely and signed, the vacuum pump may not be dismantled.

CAUTION

During dismantling of the turbomolecular pump protective equipment and clothing must be worn.

- dispose of the turbomolecular pump as scrap metal
- dispose of the different components of the turbomolecular pump in compliance with applicable regulations

Meaning of the "WEEE" logo found in labels

The following symbol is applied in accordance with the EC WEEE (Waste Electrical and Electronic Equipment) Directive. This symbol (valid only in countries of the European Community) indicates that the product it applies to must NOT be disposed of together with ordinary domestic or industrial waste but must be sent to a differentiated waste collection system. The end user is therefore invited to contact the supplier of the device, whether the Parent Company or a retailer, to initiate the collection and disposal process after checking the contractual terms and conditions of sale.

According to the best knowledge at the time of printing of this manual the materials used for the manufacture of the turbomolecular pump.
Dimensions

Turbo TM 2200 A

The following figure shows the Turbo TM 2200 A outlines (dimensions are in mm)

Dimensions: millimeters (inches)
Typical Pumping Speed curves

Compression Ratio Vs. Foreline Pressure
Profibus Message Mapping

Parameter buffer (17 bytes)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Byte</th>
<th>Unit Res</th>
<th>Range</th>
<th>Description</th>
<th>Win Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>°C</td>
<td>15-35</td>
<td>Water Cooling Max Temperature (not used - insert 20)</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>°C</td>
<td>1-5</td>
<td>Water Cooling Hysteresis (not used - insert 2)</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>%</td>
<td>1-99</td>
<td>Setpoint Hysteresis Set the hysteresis on set point output (see set point output paragraph)</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>°C</td>
<td>-</td>
<td>Heather Jacket Temperature Setting Specific option, not available on standard models</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Sccm</td>
<td>-</td>
<td>Flowmeter Threshold Specific option, not available on standard models</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Reserved</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Hz/ mA/s</td>
<td>-</td>
<td>Setpoint Value Set the threshold for the set point output</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>s</td>
<td>0-99999</td>
<td>Vent Valve Opening Delay Set the time during the controller does not drive the set point out</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0.2s</td>
<td>0-65535</td>
<td>Vent Valve Open Time (0=)infinity. (the valve will never open)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>0.2s</td>
<td>0-65535</td>
<td>Vent Valve Open Time (0=)infinity. (the valve will never open)</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Bit Filed</td>
<td></td>
<td>B0 - Vent & Purge Auto/Man 0=Auto (the controller drives purge and vent valves) 1=Manual (see Par.Buff. byte-15-B2)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B1 - Vent & Purge Remote/Profibus 0=Serial or Profibus (see Out.Buff.byte-0 B3 and B2) 1=Remote (the valves are driven by the inputs on remote I/O connector)</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B2 - Interlock Type 0=continuous (the interlock must be present to run the pump) 1=at start (the interlock must be present only at start command)</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B3 - Setpoint Logic 0=active close (NO) 1=active open (NC)</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B4 - Heather Jacket Mode (Auto/man) Specific option, not available on standard models</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B5 - Gas Load Type 0=Ar, 1=N2</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B6 - Purge Gas Type 0=N2, 1=Ar</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B7 - Reserved</td>
<td>-</td>
<td>114</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td>1=Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td>B0, B1 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B2, B3 - Start/Stop/Interlock Mode Change the logic of Start/stop and Interlock inputs. Ask to Busch personnel for this option</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B4, B5 - Set Point Type 0=frequency 1=current 2=time 3=status (normal operation)</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B6, B7 - Analog Output Type Set the analog output on remote I/O connector proportional to: 0=frequency 1=power</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>B7 - Start/Stop 0=Stop 1=Start</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B6 - Low Speed 0=off (set the "target speed" (In Buff byte-8) at "high speed" (Out. Buff. byte-1)) 1=on (set the "target speed" (In Buff byte-8) at "low speed" (Out. Buff. byte-3))</td>
<td>001</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>Soft Start</td>
<td>0= off (this function is active at first pump run-up and can not be desactivated by the user, after first run-up activate this function only if the pump has been stopped for at least 3 months) 1=on</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>Active Stop</td>
<td>0=off (after a stop command the controller stop driving the motor, the pump will decrease its speed by friction with gas load) 1=on (after a stop command the controller will brake the pump using the motor, activate this function only if you do not use the vent valve and for few cycles at week)</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Vent Valve On/Off</td>
<td>0=close, 1=open (Valid only if in Parameter buffer Byte-15-B1=1, and Byte-15-B2=0)</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Purge Valve On/Off</td>
<td>0=close, 1=open, (Valid only if in Parameter buffer Byte-15-B1=1, and Byte-15B2=0)</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Heather Jacket Enable</td>
<td>Specific option, not available on standard models</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>Stop Speed Reading</td>
<td>0=no (after a stop command the user can not know the real pump speed 1=yes (after a stop command the user can know the real rotor speed; see in Buff. Byte Offset 6)</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	2	Hz	500-530	High Speed Value Set the high rotational speed, default=530	120
3	2	Hz	500-530	Low Speed Value Set the low rotational speed, default=500	117
0	2	mA	0-10000	Current Motor current consumption	200
2	2	W	0-750	Power Motor power absorption	201
4	2	W	0-750	Power Limit Applied Maximum allowable power	155
6	2	Hz	0-530	Driving Frequency Read the rotational speed of the pump	203
8	2	Hz	0-530	Target Frequency Read the target rotational speed	120
10	2	-	-	Flow Meter Alarm Time Specific option, not available on standard models	213
12	2	-	-	Flow Meter Alarm Event Specific option, not available on standard models	215
14	2	-	0-65536	Cycle Number Number of cycles (start and stop) done by the pump	301
16	2	min	0-65536	Last Cycle Time How long the last cycle lasted	300
18	2	hours	0-65536	Pump Life Total pump running time	302
20	1	V	0-100	Voltage Voltage provided to the motor	201
21	1	°C	0-70	Pump Bearing Temperature Read the pump upper bearing temperature. If > 60°C the controller goes in fail and the pump is stopped	204
22	1	°C	0-45	Pump Body Temperature Read the pump body temperature close to the water circuit. If > 42°C the controller goes in fail and the pump is stopped	216
23	1	°C	0-100	Controller Power Section Temperature Read the controller power section temperature if > 75°C the controller goes in fail "controller over temperature"	222
24	1	°C	0-100	Controller CPU Section Temperature Read the controller CPU section temperature if > 80°C the controller goes in fail "controller over-temperature"	211
25	1	°C	15-45	Pump Body Temperature Limit. Not used	164

<p>| 26 | 1 | - | 0-6 | 80-83 - Status 0=Stop 1=Waiting for interlock (interlock connections on remote I/O connector missing) 2=Ramp (the pump is increasing the speed) 3=Auto tuning (the speed has been reduced because the gas load is higher than the Power Limit) 4=Braking (the pump is reducing the speed using the motor) 5=Normal operation (the pump is at target speed) 6=Fail (see error code byte Input Buffer Byte-27) | 205 |</p>
<table>
<thead>
<tr>
<th>Bit Field</th>
<th>Error Code (bit field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7</td>
<td>Too High Load (the gas load is too high for the pump)</td>
</tr>
<tr>
<td>B6</td>
<td>Short Circuit (a short circuit happened between the two of the three motor phases)</td>
</tr>
<tr>
<td>B5</td>
<td>Over-voltage (not used)</td>
</tr>
<tr>
<td>B4</td>
<td>Verify Line Select (the auto voltage selection mismatch the real input voltage)</td>
</tr>
<tr>
<td>B3</td>
<td>Power Fail (internal circuitry failure)</td>
</tr>
<tr>
<td>B2</td>
<td>Controller Over-Temperature (Controller Power Section Temperature or Controller CPU Section Temperature are over the limit)</td>
</tr>
<tr>
<td>B1</td>
<td>Pump Over-temperature (Pump Bearing Temperature or Pump Body Temperature are over the limit)</td>
</tr>
<tr>
<td>B0</td>
<td>Check Connection To Pump (the connection between controller and pump missing)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sccm</th>
<th>Flow Meter Reading (Specific option, not available on standard models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B0</th>
<th>Start/ Stop Status 0=Stop 1=Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Low Speed Status (Read the "Low Speed" function status (Out Buff byte-0 B6)) 0=off (the "target speed" (In Buff byte-8) is "high speed" (Out Buff byte-1)) 1=on (the "target speed" (In Buff byte-8) is "high speed" (Out Buff byte-3))</td>
</tr>
<tr>
<td>B2</td>
<td>Soft Start Status 0=on 1=off (this function is active at first pump run-up and can not be deactivated by the user, after first run-up activate this function only if the pump has been stopped for at least 3 months; this procedure will take 1h).</td>
</tr>
<tr>
<td>B3</td>
<td>Vent Valve Status 0=close; 1=open</td>
</tr>
<tr>
<td>B4</td>
<td>Purge Valve status 0=close; 1=open</td>
</tr>
<tr>
<td>B5</td>
<td>Set Point Status 0=open; 1=closed</td>
</tr>
<tr>
<td>B6</td>
<td>Flow meter Alarm Status Specific option, not available on standard models</td>
</tr>
<tr>
<td>B7</td>
<td>Not used</td>
</tr>
</tbody>
</table>

NOTE: In order to don't overload the controller's internal serial link, following precautions are taken:

- The parameters are written from the gateway to the controller only when their value changes.
- The parameters are never read back from the controller to the interface. The controller's response at the write command (ACK, NACK, etc) is used to establish if the writing succeed or not.
NOTE: when ordering spare parts or accessories acc. to the table below please always quote the type and the serial no. of the vacuum pump. This will allow Busch service to check if the vacuum pump is compatible with a modified or improved part.

The exclusive use of genuine spare parts and consumables is a prerequisite for the proper function of the vacuum pump and for the granting of warranty, guarantee or goodwill.

This parts list applies to a typical configuration of the standard vacuum pump. Depending on the specific order deviating parts data may apply.
Technical data

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Turbo TM 2200 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping speed (without inlet screen) m³/h</td>
<td>N₂: 7920</td>
</tr>
<tr>
<td></td>
<td>Ar: 7380</td>
</tr>
<tr>
<td></td>
<td>He: 6840</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>N₂: 3×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>Ar: 6×10^{-5}</td>
</tr>
<tr>
<td>Base pressure with recommended forepump hPa (mbar)</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Inlet flange, nominal diameter</td>
<td>ISO 250-F</td>
</tr>
<tr>
<td>Foreline flange, nominal diameter</td>
<td>KF 40 NW</td>
</tr>
<tr>
<td>Nominal rotational speed min⁻¹</td>
<td>31800</td>
</tr>
<tr>
<td>Start-up time without gas load and with the</td>
<td>< 6</td>
</tr>
<tr>
<td>recommended forepump minutes</td>
<td></td>
</tr>
<tr>
<td>Minimum recommended forepump m³/h</td>
<td>At least 60 m³/h (but depending on the inlet gas flow)</td>
</tr>
<tr>
<td>Operating position</td>
<td>Any</td>
</tr>
<tr>
<td>Operating ambient temperature °C</td>
<td>+5°C...+35°C</td>
</tr>
<tr>
<td>Max. rotor temperature °C</td>
<td>120</td>
</tr>
<tr>
<td>Lubricant</td>
<td>Permanent lubrication</td>
</tr>
<tr>
<td>Cooling requirements</td>
<td>Water</td>
</tr>
<tr>
<td>Coolant water</td>
<td>Recommended flow: l/min 3.5</td>
</tr>
<tr>
<td></td>
<td>Temperature °C +15...+30</td>
</tr>
<tr>
<td></td>
<td>Pressure bar 3...5</td>
</tr>
<tr>
<td>Noise level (EN ISO 2151) dB(A)</td>
<td>< 60 (at 1 meter)</td>
</tr>
<tr>
<td>Power supply:</td>
<td></td>
</tr>
<tr>
<td>Input voltage : Vac</td>
<td>208-240</td>
</tr>
<tr>
<td>Input frequency : Hz</td>
<td>50-60</td>
</tr>
<tr>
<td>Max input power : VA</td>
<td>950</td>
</tr>
<tr>
<td>Stand-by power W</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Max operating power</td>
<td>515 W for Nitrogen or lighter gases</td>
</tr>
<tr>
<td></td>
<td>430 W for Argon with purge on</td>
</tr>
<tr>
<td></td>
<td>390 W for Argon with purge off</td>
</tr>
<tr>
<td>Protection fuse (Navigator Controller) A</td>
<td>2 x 12,5</td>
</tr>
<tr>
<td>Power cable</td>
<td>With European or NEMA plug 3 meters long (optional)</td>
</tr>
<tr>
<td>Serial communication (Navigator kit)</td>
<td>RS232 cable with a 9-pin D type male connector and a 9-pin D female connector, and T-Plus software (optional)</td>
</tr>
<tr>
<td>Installation category</td>
<td>II</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
</tr>
<tr>
<td>Max. altitude</td>
<td>2000 m MSL</td>
</tr>
<tr>
<td>Storage temperature °C</td>
<td>-20°C to +70°C</td>
</tr>
<tr>
<td>Environment protection</td>
<td>IP54</td>
</tr>
<tr>
<td>Weight kg</td>
<td>52</td>
</tr>
</tbody>
</table>

NOTE: When the Turbo TM 2200 A has been stored at a temperature less than 5°C, wait until the system has reached the above mentioned temperature before starting the pump.
EC Declaration of Conformity

NOTE: This Declaration of Conformity and the CE-mark affixed to the nameplate are valid for the vacuum pump within the Busch-scope of delivery. When this vacuum pump is integrated into a larger machinery the manufacturer of the larger machinery (this can be operator, too) must conduct the conformity assessment process acc. to the Directive Machinery 2006/42/EC for the larger machine, issue the Declaration of Conformity for it and affix the CE-mark.

We
Ateliers Busch S.A.
Zone Industrielle
2906 Chevenez
Switzerland

represented in the European Union by

Dr.-Ing. K. Busch GmbH
Schauslandstr. 1
79689 Maulburg
Germany

declare that the vacuum pumps Turbo TM 2200 A

in accordance with the European Directives
“Machinery” 2006/42/EC,
“Electromagnetic Compatibility” 2004/108/EC

have been designed and manufactured to the following specifications:

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title of the standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonised standards</td>
<td></td>
</tr>
<tr>
<td>UNI EN 292-1</td>
<td>Fundamental concepts, general design principles - terminology, basic methodology: Part 1</td>
</tr>
<tr>
<td>UNI EN 292-2</td>
<td>Fundamental concepts, general design principles - Specifications and technical principles: Part 2</td>
</tr>
<tr>
<td>UNI EN 13857</td>
<td>Safety of machinery - Safety distances to prevent hazard zones being reached by upper and lower limbs</td>
</tr>
<tr>
<td>EN 1012-2</td>
<td>Compressors and vacuum pumps - Safety requirements: Part 2</td>
</tr>
<tr>
<td>EN 61010-1</td>
<td>Electrical equipment of machines - Part 1</td>
</tr>
<tr>
<td>EN 61000-4-2</td>
<td>Electromagnetic compatibility (EMC) – Electrostatic discharge immunity test: Part 2</td>
</tr>
<tr>
<td>EN 61000-4-3</td>
<td>Electromagnetic compatibility (EMC) – Radiated, radio-frequency, electromagnetic field immunity test: Part 3</td>
</tr>
<tr>
<td>EN 61000-4-4</td>
<td>Electromagnetic compatibility (EMC) – Testing and measurement techniques - Electrical fas transient/burst immunity test: Part 4</td>
</tr>
<tr>
<td>EN 61000-4-5</td>
<td>Electromagnetic compatibility (EMC) – Testing and measurement techniques - Surge immunity test: Part 5</td>
</tr>
<tr>
<td>EN ISO 2151</td>
<td>Acoustics - Noise test code for compressors and vacuum pumps - Engineering method (grade 2)</td>
</tr>
</tbody>
</table>

Manufacturer: Dr.-Ing. Karl Busch
General director

Mandatory within the EC: CE

Person authorised to compile the technical file:
Gerd Rohweder
Product manager

Christian Hoffmann
General director

[Signatures]
Argentina
Busch Argentina S.R.L.
Santo Domingo 3076
C1294CGN - Capital Federal
Buenos Aires
Phone: +54 11 4302 8183
Fax: +54 11 4301 0896
e-mail: info@busch-vacuum.com.ar

Australia
Busch Australia Pty. Ltd.
30 Lakeside Drive
Broadmeadow, VIC, 3047
Phone: +61 3 93 55 06 00
e-mail: sales@busch.com.au

Austria
Busch Austria GmbH
Industriepark Nord
2100 Korneuburg
Phone: +43 2262 756 65-0
e-mail: info@busch.at

Belgium
Busch N.V.
Kruisstraat 7
9160 Lokeren
Phone: +32 9/ 348 47 22
e-mail: busch@busch.be

Brazil
Busch do Brasil Ltda.
Estrada Municipal Santo Gastaldi, 160
13240-000 Januári-SP
Phone: +55 11 4016 1400
e-mail: vendas@buschdobrasil.com.br

Canada
Busch Vacuum Technologies Inc.
1740, Lionel Bertrand
Boisbriand, Quebec J7H 1N7
Phone: +1 450 430 5132
e-mail: info@busch.ca

Chile
Busch Chile S. A.
Calle El Roble Nº 375-G
Lampa - Santiago
Phone: +56 2 3765136
e-mail: info@busch.cl

China
Busch Vacuum (Shanghai) Co., Ltd.
No.5, Lane 195 Xipu Road
Songjiang Industrial Estate East New Zone
Shanghai 201611 PRC
Phone: +86 021 67060080
e-mail: busch@busch-china.com

Czech Republic
Busch Vakuutmécník a.s.
Jugoslávská 868/4
615 00 Brno
Phone: +420 530 504 410
e-mail: info@buschpumps.cz

Denmark
Busch Vakuutemiknik A/S
Parallelevj 11
8680 Ry
Phone: +45 87 88 07 77
e-mail: info@busch.dk

Finland
Busch Vakuutemiknik Oy
Sirkkulantie 4
01300 Vantaa
Phone: +358 9 774 60 60
e-mail: info@busch.fi

France
Busch France S.A.S.
16, Rue du Bois Chalain
91900 Livry-Gargan
Phone: +33 16989 8989
e-mail: info@busch.fr

Germany
Dr.-Ing. K. Busch GmbH
Schaumsandstrasse 1
79689 Maulburg
Phone: +49 7622 681-0
e-mail: info@busch.de

Hungary
Busch Vakuutemiknik Kft.
Győri út 23.
2310 Szigetzentmiklós
Phone: +36 24 887 308
e-mail: buschvhu@busch.com.hu

India
Busch Vacuum India Pvt. Ltd.
Plot 103, Sector 5
IMT Manesar
Gurgaon
Haryana- 122 050
Phone: +91 124 396 7983
e-mail: sales@buschindia.com

Ireland
Busch Ireland Ltd.
A10-11 Howth Junction Business Centre
Kilbarrack, Dublin 5
Phone: +353 1 832 1446
e-mail: sales@busch.ie

Israel
Busch Israel Ltd.
1 Mevo Sivan Street
Qiryat Gat 82022, Israel
Phone: +972 (08) 6810485
e-mail: service_sales@busch.co.il

Italy
Busch Italia srl.
Via Ettore Majorana, 16
20004 Nova Milanese
Phone: +39 0362 370 91
e-mail: info@busch.it

Japan
Nippon Busch K.K.
1-29-33, Megumigaoka
Hiratsuka City, Kanagawa
Japan 259-1220
Phone: +81 463-50-4000
e-mail: info@busch.co.jp

Korea
Busch SVC Korea, Inc
189-51, Socheon-ro, Majang-myun,
Ichon-si, Gyunggi-do, 467-813,
Republic of Korea
Phone: +82 31 645 2700
e-mail: info@buschvkg.co.kr

Malaysia
Busch Malaysia Sdn Bhd
486, Jalan Tadah 33/32, Sekayun 33
Shah Alam Technology Park
40400 Shah Alam
Selangor Darul Ehsan
Phone: +60 3 5122 2128
e-mail: busch@busch.com.my

Mexico
Busch Vacuum Mexico S. de R.L. de C.V.
Tlaquepaque 4865, Los Altos
Monterrey, Nuevo Leon
Mexico 64370
Phone: +52 81 8311-1385
e-mail: info@busch.com.mx

Netherlands
Busch B.V.
Pompemelaan 2
3447 GK Woerden
Phone: +31 348-422999
e-mail: info@busch.nl

New Zealand
Busch New Zealand Ltd.
Unit D, 1 Armery Drive
Albany, Auckland 1330
Phone: +64 9 414 7782
e-mail: sales@busch.co.nz

Norway
Busch Vakuutemiknik AS
Hestehagen 2
1440 Drøbak
Phone: +47 64 98 98 50
e-mail: busch@busch.no

Poland
Busch Polska Sp. z o.o.
11-200 Wlodawek
Phone: +48 54 2315400
e-mail: busch@busch.pl

Portugal
Busch Vakuutemiknik Lda
Hestehagen 2
1440 Drøbak
Phone: +351 234 648 070
e-mail: info@busch.pt

Russia
Busch N.V.
91090 Lisses
91090 Lisses
Phone: +33 16989 8989
e-mail: info@busch.de

Spain
Busch Ibérica S.A.
Pol. Ind. Coll de la Manya
C/ Jaume Ferran, 6-8
08403 Granollers
Phone: +34 93 861 61 60
e-mail: busch@busch.es

Sweden
Busch Vakuutemiknik AB
Bråttå Industriområde
435 33 Mönköe
Phone: +46 31-338 00 80
e-mail: info@busch.se

Switzerland
Busch AG
Waldweg 22
4312 Magden
Phone: +41 / 845 90 90
e-mail: busch@busch.ch

Taiwan
Busch Vacuum (Taiwan) Co., Ltd.
29/10 Môi 7, Sai Pouhchareon,
Bang-nong-Trade Road,
Bangchalong, Bangpêei
Samutprakarn 10540
Phone: +66 2 3370360-2
Fax: +66 2 3370363
e-mail: info@busch.com.tw

Turkey
VAKUTEK
Emilâk Kredi Isnahi No: 179
34672 Üsküdar-Istanbul
Phone: +90 216 343 5126
Fax: +90 216 343 5126
e-mail: info@buschco.it

United Arab Emirates
Busch Vacuum FZE
A-3/71, Sharjah Airport International Free zone (SAIF-Zone),
P.B.No: 1218855, Sharjah
Phone: +971 06 5529 174
Fax: +971 6 5528 653
e-mail: abhishek.sharma@busch.ae

United Kingdom
Busch (UK) Ltd
Hortonwood Lodge
Telford Shropshire TF1 7YB
Phone: +44 1952 677 432
Fax: +44 1952 677 432
e-mail: sales@busch.co.uk

United States
Busch LLC
516-8 Viking Drive
Virginia Beach, VA 23452
Phone: +1 757 463-7800
Fax: +1 757 463-7407
e-mail: marketing@buschusa.com

World Wide
Busch – All over the World in Industry
www.busch-vacuum.com